首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Priming plants by non-pathogenic bacteria allows the host to save energy and to reduce time needed for development of defense reaction during a pathogen attack. However, information on the role of endophytes in plant defense is limited. Here, the ability of endophytic bacteria to promote growth and resistance of potato plants towards infection by the necrotroph Pectobacterium atrosepticum was studied. A Pseudomonas sp. strain was selected due to antagonism towards bacterial pathogens and a Methylobacterium sp. strain because of efficient plant colonization. The aim of this study was to find if there is any correlation between plant growth promotion and induction of resistance by endophytes of potato, as well as to study the putative mechanisms of endophytes interacting with the plant during resistance induction. Both tested strains promoted growth of potato shoots but only the Pseudomonas sp. increased potato resistance towards the soft rot disease. Induction of disease resistance by the Methylobacterium sp. was inversely proportional to the size of bacterial population used for inoculation. The plant antioxidant system was moderately activated during the induction of resistance by the biocontrol strains. qPCR data on expression of marker genes of induced systemic resistance and acquired systemic resistance in endophyte-infected Arabidopsis plants showed activation of both salicylic acid and jasmonate/ethylene-dependent pathways after challenge inoculation with the pathogen. We suggest that some endophytes have the potential to activate both basal and inducible plant defense systems, whereas the growth promotion by biocontrol strains may not correlate with induction of disease resistance.  相似文献   

2.
The use of indigenous bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon pollutants. The isolation and selection of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most promising strains for site decontamination. Two different media, a minimal medium supplemented with a mixture of polycyclic aromatic hydrocarbons and a MS medium supplemented with triphenyltetrazolium chloride, were used for the isolation of bacterial strains from two hydrocarbon contaminated soils and from their enrichment phases. The hydrocarbon degradation abilities of these bacterial isolates were easily and rapidly assessed using the 2,6-dichlorophenol indophenol assay. The diversity of the bacterial communities isolated from these two soil samples and from their enrichment phases was evaluated by the combination of a bacterial clustering method, fluorescence ITS-PCR, and bacterial identification by 16S rRNA sequencing. Different PCR-based assays were performed in order to detect the genes responsible for hydrocarbon degradation. The best hydrocarbon-degrading bacteria, including Arthrobacter sp., Enterobacter sp., Sphingomonas sp., Pseudomonas koreensis, Pseudomonas putida and Pseudomonas plecoglossicida, were isolated directly from the soil samples on minimal medium. The nahAc gene was detected only in 13 Gram-negative isolates and the sequences of nahAc-like genes were obtained from Enterobacter, Stenotrophomonas, Pseudomonas brenneri, Pseudomonas entomophila and P. koreensis strains. The combination of isolation on minimal medium with the 2,6-dichlorophenol indophenol assay was effective in selecting different hydrocarbon-degrading strains from 353 isolates.  相似文献   

3.
Suppression of soilborne diseases by biocontrol agents involves complex interactions among biocontrol agents and the pathogen and between these microorganisms and the plant. In general, these interactions are not well characterized. In this work, we studied (i) the diversity among strains of fluorescent Pseudomonas spp., Bacillus spp., and Paenibacillus sp. for their sensitivity to fusaric acid (FAc) and phytoanticipins from different host plants, (ii) the diversity of pathogenic and nonpathogenic Fusarium oxysporum isolates for their sensitivity to phytoanticipins, and (iii) the influence of FAc on the production of pyoverdine by fluorescent Pseudomonas spp. tolerant to this compound. There was a great diversity in the response of the bacterial strains to FAc; however, as a group, Bacillus spp. and Paenibacillus macerans were much more sensitive to FAc than Pseudomonas spp. FAc also affected production of pyoverdine by FAc-tolerant Pseudomonas spp. strains. Phytoanticipins differed in their effects on microbial growth, and sensitivity to a phytoanticipin varied among bacterial and fungal strains. Biochanin A did not affect growth of bacteria, but coumarin inhibited growth of Pseudomonas spp. strains and had no effect on Bacillus circulans and P. macerans. Conversely, tomatine inhibited growth of B. circulans and P. macerans. Biochanin A and tomatine inhibited growth of three pathogenic isolates of F. oxysporum but increased growth of three nonpathogenic F. oxysporum isolates. Coumarin inhibited growth of all pathogenic and nonpathogenic F. oxysporum isolates. These results are indicative of the complex interactions that can occur among plants, pathogens, and biological control agents in the rhizosphere and on the root surface. Also, these results may help to explain the low efficacy of some combinations of biocontrol agents, as well as the inconsistency in achieving disease suppression under field conditions.  相似文献   

4.
In the present survey, quorum quenching activity was examined from a biocontrol point of view. Acyl-homoserine lactone (AHL) degrading bacteria were isolated from tomato rhizosphere using two standard bioreporter strains and different synthetic AHLs and then identified according to 16S rDNA sequences. Five isolates capable of inactivating both short and long 3oxo-substituted AHLs showed high similarity with the genera Bacillus, Microbacterium and Arthrobacter, and thereby Bacillus cereus U92 was determined as the most efficient quorum quencher strain. In the quantitative experiments, this strain remarkably inactivated all synthetic AHLs up to 80%. In the laboratory co-cultures, B. cereus U92 efficiently quenched QS-regulated phenotypes in Agrobacterium tumefaciens, Pseudomonas aeruginosa, Pseudomonas chlororaphis and Chromobacterium violaceum. The strain successfully reduced the frequency of Ti-plasmid conjugal transfer in A. tumefaciens by about 99% in the binary cultures. Meanwhile, in a more natural environment, this strain acted as a biocontrol agent, efficient in alleviating QS-regulated crown gall incidence on tomato roots (up to 90%) as well as attenuating Pectobacterium soft rot on potato tubers (up to 60%). On the other hand, reducing phenazine production in P. chlororaphis operated as a suppressor of its QS-regulated biocontrol activity and also inhibited pyocyanin production in P. aeruginosa, a plant growth-promoting bacterium, by 75%. In general, B. cereus U92 seems very promising in the biological control of pathogenic bacteria; however, its broad AHL-degrading activity has a detrimental role on beneficial microbes which should not be neglected.  相似文献   

5.
Salt-induced soil degradation is common in farmlands and limits the growth and development of numerous crop plants in the world. In this study, we isolated salt-tolerant bacteria from the rhizosphere of Tamarix chinensis, Suaeda salsa and Zoysia sinica, which are common wild plants grown on a saline–alkaline land, to test these bacteria's efficiency in alleviating salt stress in tomato plants. We screened out seven strains (TF1–7) that are efficient in reducing salt stress in tomato seedlings. The sequence data of 16S rRNA genes showed that these strains belong to Arthrobacter and Bacillus megaterium. All strains could hydrolyze casein and solubilize phosphate, and showed at least one plant growth promotion (PGP)-related gene, indicating their potential in promoting plant growth. The Arthrobacter strains TF1 and TF7 and the Bacillus megaterium strain TF2 and TF3 could produce indole acetic acid under salt stress, further demonstrating their PGP potential. Tomato seed germination, seedling length, vigor index, and plant fresh and dry weight were enhanced by inoculation of Arthrobacter and B. megaterium strains under salt stress. Our results demonstrated that salt-tolerant bacteria isolated from the rhizosphere of wild plants grown on saline–alkaline lands could be used for alleviating salt stress in crop plants.  相似文献   

6.
The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.  相似文献   

7.
About 377 guar (Cyamopsis tetragonoloba) rhizobacteria were isolated from cultivated soils of north-west India (Thar Desert) and their antifungal activity against Macrophomina phaseolina (strains of groundnut, mungbean and guar) and Fusarium oxysporum (strains of chickpea and cumin) was examined. Isolates were characterised for generic types and physiological/functional diversity. About 19% isolates representing 24% locations were inhibitory to fungal growth. Isolates 009071, 009073, 009078 and 102354 recorded maximum inhibition of pathogenic fungi on plates. Isolate 034206 gave highest %RI, 009073 showed maximum protease activity and 102354 gave highest salt tolerance. Net house and field screening results revealed that isolates 004052, 009071, 009073, 001001, 094340 and 102354 had potential for biocontrol of disease. Partial sequencing of 16S rRNA gene of 61 isolates showed that 85% of isolates belonged to genus Bacillus. Phylogenetically, however, there were four clusters in the Bacillus group comprising of Bacillus subtilis, B. cereus, B. pumilus and B. sphaericus. One isolate was identified as B. flexus, while six isolates were Bacillus spp. Four isolates were identified as Achromobacter xylosoxidans, two as Bacterium (unclassified bacteria), and one each as Ochrobactrum intermedium, Pseudomonas aeruginosa and Ralstonia sp.  相似文献   

8.
The bacterial cell surface plays a major role in the bacterial aggregation that in turn plays a positive role in affecting the bacterial dispersion and survival in soil and their ability to adhere to plant surfaces. Plant growth–promoting Methylobacterium strains, Methylobacterium goesingense CBMB5, Methylobacterium sp. CBMB12, Methylobacterium oryzae CBMB20, Methylobacterium fujisawaense CBMB37, M. oryzae CBMB110 and Methylobacterium suomiense CBMB120 were evaluated for aggregation efficiency. Aggregation occurred in all test strains under high C/N growth conditions, and the strain CBMB12 showed the highest aggregation of 53.4 % at 72 h. Disaggregation compound treatment studies revealed the role of protein–protein interaction in Methylobacterium strains except CBMB110 and CBMB120 strains, where a possible carbohydrate–protein interaction is suspected. Surface layer protein extraction by LiCl followed by SDS-PAGE analysis showed the presence of proteins at molecular weights ranging from 41 to 49 kDa. Methylobacterium strains under aggregated conditions showed increased hydrophobicity compared to the cells under standard grown conditions. A relatively higher hydrophobicity of 50.1 % as evident by the adhesion with xylene was observed with strain CBMB12 under aggregated condition. This study reports the aggregation ability in plant growth–promoting Methylobacterium strains and the possible involvement of cellular components and hydrophobicity in this phenomenon.  相似文献   

9.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

10.
Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L.) cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L.) by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.  相似文献   

11.
Bacillus and Pseudomonas spp. are known to be involved in plant pathogenic fungi elimination during the slow filtration process used in tomato soilless cultures. We isolated 6-8 strains of both Bacillus and Pseudomonas from the top, middle, and bottom sections of filters and identified them after 16S rDNA sequencing. Four Pseudomonas strains were identified as Pseudomonas fulva, 5 as Pseudomonas plecoglossicida, and 12 as Pseudomonas putida. The use of specific oligonucleotide polymerase chain reaction primer sets designed from gyrB gene sequences additionally permitted the identification of 17 Bacillus cereus and 3 Bacillus thuringiensis strains. Ribotyping with EcoRI pointed out an important polymorphism within Bacillus and Pseudomonas strains. Molecular characterization did not reveal a correlation between the location of isolates within the filter (top, middle, or bottom) and bacterial identification or riboclusters. Functional aspects assessed by community-level physiological profiling showed marked phenotypic differences between Pseudomonas communities isolated from the top and bottom filter layers; differences were lower between Bacillus communities of different layers and far less noticeable between mixed communities of Bacillus and Pseudomonas. These strains were tested for several suppressive activities. Conversely to most Bacillus, the majority of Pseudomonas strains were auxin producers and promoted the growth of tomato plantlet roots. On the other hand, only Bacillus strains displayed antagonistic activities by inhibiting the growth of pathogenic fungi frequently detected in soilless cultures. Siderophores were produced by nearly all bacteria, but at higher amounts by Pseudomonas than Bacillus strains. The biocontrol agent potentiality of certain strains to optimize the slow filtration process and to promote the suppressive potential of nutrient solution is discussed.  相似文献   

12.
Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers.  相似文献   

13.
Two hundred and nineteen bacterial strains were isolated from cow dung. Among these, 59 isolates displayed nematicidal activity against the model nematode Caenorhabditis elegans. Of the 59 bacterial strains, 17 killed >90 % of the tested nematodes within 1 h. Based on their 16S rRNA sequences, these 17 strains were identified as Alcaligenes faecalis, Bacillus cereus, Proteus penneri, Providencia rettgeri, Pseudomonas aeruginosa, Pseudomonas otitidis, Staphylococcus sciuri, Staphylococcus xylosus, Microbacterium aerolatum, Pseudomonas beteli. Among these 17 strains, 14 produced volatile organic compound(s) that inhibited the mobility of the C. elegans nematodes. These 14 strains also showed nematicidal activity against a plant pathogenic nematode Meloidogyne incognita. This is the first report demonstrating nematicidal activity for strains in genera Proteus, Providencia and Staphylococcus.  相似文献   

14.
A collection of 282 bacterial isolates from the rhizosphere and different organs of healthy field-grown grapevine plants was obtained and screened for their ability to protect grapevine leaves against Botrytis cinerea, the causal agent of gray mold. Twenty-six strains effectively controlled B. cinerea infections on leaves. After phenotypic and molecular analysis, seven strains were identified as Pseudomonas fluorescens PTA-268 and PTA-CT2, Bacillus subtilis PTA-271, Pantoea agglomerans PTA-AF1 and PTA-AF2, and Acinetobacter lwoffii PTA-113 and PTA-152. In vitro antifungal experiments showed that from these seven strains, only PTA-AF1 and PTA-CT2 exhibited a direct antagonism against B. cinerea. Furthermore, the biocontrol activity of the seven bacteria was associated with differential induction of defense-related responses lipoxygenase, phenylalanine ammonia-lyase and chitinase in grapevine leaves. Our results show that the selected bacteria can efficiently protect grapevine leaves against gray mold disease through an induction of plant resistance and in some cases by an additional antagonistic activity.  相似文献   

15.
Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 72 bacterial isolates belonging to Azotobacter, fluorescent Pseudomonas, Mesorhizobium and Bacillus were isolated from different rhizospheric soil and plant root nodules in the vicinity of Aligarh. These test isolates were biochemically characterized. These isolates were screened in vitro for their plant growth promoting traits like production of indoleacetic acid (IAA), ammonia (NH(3)), hydrogen cyanide (HCN), siderophore, phosphate solubilization and antifungal activity. More than 80% of the isolates of Azotobacter, fluorescent Pseudomonas and Mesorhizobium ciceri produced IAA, whereas only 20% of Bacillus isolates was IAA producer. Solubilization of phosphate was commonly detected in the isolates of Bacillus (80%) followed by Azotobacter (74.47%), Pseudomonas (55.56%) and Mesorhizobium (16.67%). All test isolates could produce ammonia but none of the isolates hydrolyzed chitin. Siderophore production and antifungal activity of these isolates except Mesorhizobium were exhibited by 10-12.77% isolates. HCN production was more common trait of Pseudomonas (88.89%) and Bacillus (50%). On the basis of multiple plant growth promoting activities, eleven bacterial isolates (seven Azotobacter, three Pseudomonas and one Bacillus) were evaluated for their quantitative IAA production, and broad-spectrum (active against three test fungi) antifungal activity. Almost at all concentration of tryptophan (50-500 microg/ml), IAA production was highest in the Pseudomonas followed by Azotobacter and Bacillus isolates. Azotobacter isolates (AZT(3), AZT(13), AZT(23)), Pseudomonas (Ps(5)) and Bacillus (B(1)) showed broad-spectrum antifungal activity on Muller-Hinton medium against Aspergillus, one or more species of Fusarium and Rhizoctonia bataticola. Further evaluation of the isolates exhibiting multiple plant growth promoting (PGP) traits on soil-plant system is needed to uncover their efficacy as effective PGPR.  相似文献   

16.
In this study, more than 150 bacteria showing antagonistic properties against bacterial and fungal pathogens of the tomato plant were isolated and characterized. The most efficient agents against these phytopathogenic microorganisms belong to the genus Bacillus: the best biocontrol isolates were representatives of Bacillus subtilis, B. mojavensis and B. amyloliquefaciens species. They intensively produced fengycin or/and surfactin depsipeptide antibiotics and also proved to be excellent protease secretors. It was proved, that the selected strains were able to use ethylenethiourea (ETU) as sole nitrogen source. These antagonistic and ETU-degrading Bacillus strains can be applied as biocontrol and also as bioremediation agents.  相似文献   

17.
A total of 72 isolates of root-associated/endophytic (RAE) bacteria were isolated from peanut plants grown in the main producing areas of 6 provinces in China. The 16S rRNA gene sequences of these isolates were determined and phylogenetic analyses revealed that 72 isolates belonged to the classes Bacilli (49 isolates) and Gammaproteobacteria (23 isolates). The majority of RAE bacteria in Bacilli belonged to 2 genera, Bacillus and Lysinibacillus (48 and 1) while those in Gammaproteobacteria belonged to the genera Enterobacter, Serratia, Stenotrophomonas, and Pseudomonas (7, 11, 3 and 2 isolates, respectively). This is the first report of Lysinibacillus xylanilyticus isolate as biocontrol agent against AFs. All of the selected RAE bacteria showed inhibitory activities against Aspergillus parasiticus (A. parasiticus) growth and/or aflatoxins (AFs) production by visual agar plate assay and tip culture method. Most of the RAE bacteria strains (96?% strains) were determined to have decreased mycelia growth or AFs production levels by >50?% (p?<?0.05). Bacterial isolates were further characterized for chitinolytic activity and 22 strains (30?% strains) of identified RAE bacteria degraded colloidal chitin on the chitin medium plate. Ten selected chitinolytic RAE bacteria were tested for antifungal activity on peanuts and most of them significantly decreased mycelial growth and AFs production levels by >90?%. These results showed a wide distribution of biological control bacteria against AFs in Chinese peanut main producing areas and the selected RAE bacteria could potentially be utilized for the biocontrol of toxicogenic fungi.  相似文献   

18.
A Pseudomonas 2,4-diacetylphloroglucinol (DAPG)-producing population that occurred naturally on the roots, in rhizosphere soil of Zea mays and in the nonrhizosphere soil was investigated in order to assess the microbial diversity at five stages of plant growth. A total of 1,716 isolates were obtained, and 188 of these isolates were able to produce DAPG. DAPG producers were isolated at each stage of plant growth, indicating that the maize rhizosphere is colonized by natural DAPG producers throughout development. The frequency of DAPG producers was very low in the first stage of plant growth and increased over time. An analysis of the level of biodiversity of the DAPG producers at the species level was performed by comparing the AluI restriction patterns of the 16S ribosomal DNAs (rDNAs) amplified by PCR from 167 isolates. This comparison allowed us to cluster the isolates into four amplified rDNA restriction analysis (ARDRA) groups, and the main group (ARDRA group 1) contained 89.8% of the isolates. The diversity of the 150 isolates belonging to ARDRA group 1 was analyzed by the random amplified polymorphic DNA (RAPD) technique. An analysis of RAPD patterns by a molecular variance method revealed that there was a high level of genetic diversity in this population and that the genetic diversity was related to plant age. Finally, we found that some of the DAPG producers, which originated from all stages of plant growth, had the same genotype. These DAPG producers could be exploited in future screening programs for biocontrol agents.  相似文献   

19.
Bacterial wilt of potato caused by Ralstonia solanacearum is one of the most destructive diseases in Kurdistan province, Iran. The objective of the present study was to evaluate antagonistic effects of some rhizobacteria isolated from the rhizosphere of potato plants against R. solanacearum, the agent of potato bacterial wilt. A total of 52 rhizobacteria were isolated and screened for in vitro antagonistic activity against R. solanacearum. Seven isolates with inhibiting effects of the pathogen were identified by phenotypic properties and partial sequencing of 16s rRNA as Pseudomonas fluorescens Pf11, P. fluorescens Pf16, Pseudomonas putida Pp17, Paenibacillus sp. Pb28 and Enterobacter sp. En38, Pseudomonas fluorescens Pp23 and Serratia sp. Se40. Strains Pf11, Pf16, Pp17 and Pb28 significantly inhibited the growth of the pathogen. Strains En38, Pp23 and Se40 showed a moderate or weak inhibition. During greenhouse study, strains were evaluated for their effects in reducing of disease and increasing biomass of potato plants. In according to greenhouse experiment results, isolates Pb28, Pp17 and Pf11significantly reduced disease by 55.56%, 51.50% and 38.58%, respectively. In addition, plant biomass significantly increased in plants treated with Pb28, Pp17, Pf11 and Pf16, compared to the control. Therefore, this study shows that these four strains have potential to be used as biocontrol agents against R. solanacearum. To confirm their effectiveness as commercial biocontrol agent, it is necessary to evaluate their efficiency in the field conditions in the next studies.  相似文献   

20.
To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号