首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods to unequivocally assess and quantify exposure to organophosphate anti-cholinesterase agents are highly valuable, either from a biomonitoring or a forensic perspective. Since for both OP pesticides and various nerve agents the skin is a predominant route of entry, we hypothesized that proteins in the skin might represent an ideal source of unequivocal and persistent biomarkers for exposure to these compounds. In this exploratory study we show that keratin proteins in human skin are relevant binding sites for organophosphates. The thick cornified epithelium of human plantar skin (callus) was exposed to a selection of relevant organophosphorus compounds and keratin proteins were subsequently extracted. After carboxymethylation of cysteine residues, enzymatic digestion of the keratins with pronase and trypsin was performed and the resulting amino acid and peptides were analyzed to assess whether covalent adducts had formed. LC-tandem MS analysis of the pronase digests demonstrated that tyrosine and to a lesser extent serine residues were selectively modified by organophosphate pesticides (both phosphorothioates and the corresponding oxon forms) under physiological conditions. In addition, modification of tyrosine with the nerve agent VX was unequivocally assessed. In order to elucidate specific binding sites, LC-tandem MS analysis of trypsin digests showed two separate tryptic keratin fragments, i.e. LASY*LDK and SLY*GLGGSK, with Y* the modified tyrosine residues, originating from keratin 1/6 and keratin 10, respectively. These preliminary findings, revealing novel binding targets for anti-cholinesterase organophosphates, will form a firm basis for the development of novel (non-invasive) methods for assessment of exposure to organophosphates. Whether this binding will also have biological implications remains an issue for further investigations.  相似文献   

2.
3.
The lipid lamellae in the stratum corneum (SC) play a key role in the barrier function of the skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). In pig SC at least six subclasses of ceramides (referred to as CER 1, 2-6) are present. Recently it was shown that in mixtures of isolated pig SC ceramides (referred to as CER(1-6)) and CHOL two lamellar phases are formed, which mimic SC lipid organisation very closely [J.A. Bouwstra et al., 1996, J. Lipid Res. 37, 999-1011] [1]. Since the CER composition in SC originating from different sources/donors often varies, information on the effect of variations in CER composition on the SC lipid organisation is important. The results of the present study with mixtures of CHOL including two different CER mixtures that lack CER 6 (CER(1-5) mixtures) revealed that at an equimolar molar ratio their lipid organisation was similar to that of the equimolar CHOL:CER(1-6) and CHOL:CER(1,2) mixtures, described previously. These observations suggest that at an equimolar CHOL:CER ratio the lipid organisation is remarkably insensitive toward a change in the CER composition. Similar observations have been made with equimolar CHOL:CER:FFA mixtures. The situation is different when the CHOL:CER molar ratio varies. While in the CHOL:CER(1-6) mixture the lamellar organisation hardly changed with varying molar ratio from 0.4 to 2, the lamellar organisation in the CHOL:CER(1-5) mixtures appeared to be more sensitive to a change in the relative CHOL content, especially concerning the changes in the periodicities of the lamellar phases. In summary, these findings clearly indicate that at an equimolar CHOL:CER molar ratio the lamellar organisation is least sensitive to a variation in CER composition, while at a reduced CHOL:CER molar ratio the CER composition plays a more prominent role in the lamellar phases. This observation may have an implication for the in vivo situation when both the CER composition and the CHOL:CER molar ratio change simultaneously.  相似文献   

4.
The skin barrier function is provided by the stratum corneum (SC). The lipids in the SC are composed of three lipid classes: ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) which form two crystalline lamellar structures. In the present study, we investigate the effect of CER chain length distribution on the barrier properties of model lipid membranes mimicking the lipid composition and organization of SC. The membranes were prepared with either isolated pig CERs (PCERs) or synthetic CERs. While PCERs have a wide chain length distribution, the synthetic CERs are quite uniform in chain length. The barrier properties were examined by means of permeation studies using hydrocortisone as a model drug. Our studies revealed a reduced barrier in lipid membranes prepared with PCERs compared to synthetic CERs. Additional studies revealed that a wider chain length distribution of PCERs results in an enhanced hexagonal packing and increased conformational disordering of the lipid tails compared to synthetic CERs, while the lamellar phases did not change. This demonstrates that the chain length distribution affects the lipid barrier by reducing the lipid ordering and density within the lipid lamellae. In subsequent studies, the effect of increased levels of FFAs or CERs with a long acyl chain in the PCERs membranes was also studied. These changes in lipid composition enhanced the level of orthorhombic packing, reduced the conformational disordering and increased the barrier of the lipid membranes. In conclusion, the CER chain length distribution is an important key factor for maintaining a proper barrier.  相似文献   

5.
Elevated non-esterified fatty acids, triglyceride, diacylglycerol, and ceramide have all been associated with insulin resistance in muscle. We set out to investigate the role of intramyocellular lipid metabolites in the induction of insulin resistance in human primary myoblast cultures. Muscle cells were subjected to adenovirus-mediated expression of perilipin or incubated with fatty acids for 18 h, prior to insulin stimulation and measurement of lipid metabolites and rates of glycogen synthesis. Adenovirus-driven perilipin expression lead to significant accumulation of triacylglycerol in myoblasts, without any detectable effect on insulin sensitivity, as judged by the ability of insulin to stimulate glycogen synthesis. Similarly, incubation of cells with the monounsaturated fatty acid oleate resulted in triacylglycerol accumulation without inhibiting insulin action. By contrast, the saturated fatty acid palmitate induced insulin resistance. Palmitate treatment caused less accumulation of triacylglycerol than did oleate but also induced significant accumulation of both diacylglycerol and ceramide. Insulin resistance was also caused by cell-permeable analogues of ceramide, and palmitate-induced resistance was blocked in the presence of inhibitors of de novo ceramide synthesis. Oleate co-incubation completely prevented the insulin resistance induced by palmitate. Our data are consistent with ceramide being the agent responsible for insulin resistance caused by palmitate exposure. Furthermore, the triacylglycerol derived from oleate was able to exert a protective role in sequestering palmitate, thus preventing its conversion to ceramide.  相似文献   

6.
Conditions have been determined for the benzoylation of ceramides containing nonhydroxy and hydroxy fatty acids, and a high performance liquid chromatography system for the separation and measurement of these derivatives has been devised that is capable of good resolution and high sensitivity. These methods have been used to determine quantitatively the levels of ceramides in human tissues, and in serum and urine, and to demonstrate elevated amounts of ceramide in Farber's disease urine and tissues.  相似文献   

7.
A new ceramide consisting of 6-hydroxysphingosine linked to a non-hydroxyacid was found in human epidermal lipid. This ceramide was sought because its fatty acid and sphingoid moieties are present in other combinations in human epidermal ceramides. To isolate the new ceramide, the mixture of ceramides in human epidermal lipid was first separated into fractions by thin-layer chromatography (TLC), and then each fraction was further purified by TLC after acetylation of all hydroxyl groups. TLC after acetylation revealed that one of the fractions isolated in the first TLC step contained two components, namely, the ceramide consisting of sphingosine linked to an alpha-hydroxyacid and an unknown ceramide. The new ceramide constituted about 9% of the total ceramides, and was shown by NMR spectroscopy to be N-acyl-6-hydroxysphingosine.  相似文献   

8.
A 2.8-fold accumulation of ceramide was demonstrated in cultured skin ftbroblasts from a patient with Farber's disease, an inborn error of metabolism in which acid ceramidase activity is deficient. To investigate the role of acid ceramidase in the metabolism of ceramide in fibroblasts, we have investigated the lysosomal degradation of ceramide that was taken up by fibroblasts from an exogenous lipid suspension. Fluorescent 4-nitrobenz-2-oxa-1,3-diazole-7-aminododecanoyl-sphingosine (NBD-ceramide) from an exogenous ceramide suspension was incorporated into the intracellular structures of fibroblasts at 37 °C. Study of the cellular uptake of exogenous [3H]oleylsphingosine showed that the rate of ceramide accumulation was nearly identical in Farber's disease and normal fibroblasts. The deficiency of acid ceramidase in Farber's fibroblasts resulted in the decrease of cellular degradation and uptake of ceramide and the increase of retention time of ceramide in these diseased cells. Studies of subcellular fractionation of these fibroblasts showed that the accumulated ceramide was located in the lysosomal fraction. As a result, the density of the lysosomal fraction of Farber's fibroblasts was found to be less than that of controls. These results suggest the defect of cellular metabolism in this inherited disease is located within the lysosome.  相似文献   

9.
The cornified envelope: a model of cell death in the skin   总被引:1,自引:0,他引:1  
The epidermis functions as a barrier against the environment by means of several layers of terminally differentiated, dead keratinocytes - the cornified layer, which forms the endpoint of epidermal differentiation and death. The cornified envelope replaces the plasma membrane of differentiating keratinocytes and consists of keratins that are enclosed within an insoluble amalgam of proteins, which are crosslinked by transglutaminases and surrounded by a lipid envelope. New insights into the molecular mechanisms and the physiological endpoints of cornification are increasing our understanding of the pathological defects of this unique form of programmed cell death, which is associated with barrier malfunctions and ichthyosis.  相似文献   

10.
During formation of the stratum corneum (SC) barrier, terminally differentiated keratinocytes continue their maturation process within the dead superficial epidermal layer. Morphological studies of isolated human corneocytes have revealed differences between cornified envelopes purified from the deep and superficial SC. We used atomic force microscopy to measure the mechanical properties of native human corneocytes harvested by tape‐stripping from different SC depths. Various conditions of data acquisition have been tested and optimized, in order to obtain exploitable and reproducible results. Probing at 200 nN allowed us to investigate the total stiffness of the cells (at 50 nm indentation) and that of the cornified envelopes (at 10 to15 nm), and lipid envelopes (at 5 to 10 nm). The obtained data indicated statistically significant differences between the superficial (more rigid) and deep (softer) corneocytes, thus confirming the existence of depth and maturation‐related morphological changes within the SC. The proposed approach can be potentially used for minimally invasive evaluation of various skin conditions such as aging, skin hydration, and pathologies linked to SC.  相似文献   

11.
Full thickness models (FTMs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). However, their stratum corneum (SC) lipid composition differs from NHS causing a reduced skin barrier. The most pronounced differences in lipid composition are a reduction in lipid chain length and increased monounsaturated lipids. The liver-X-receptor (LXR) activates the monounsaturated lipid synthesis via stearoyl-CoA desaturase-1 (SCD-1). Therefore, the aim was to improve the SC lipid synthesis of FTMs by LXR deactivation. This was achieved by supplementing culture medium with LXR antagonist GSK2033. LXR agonist T0901317 was added for comparison. Subsequently, epidermal morphogenesis, lipid composition, lipid organization and the barrier functionality of these FTMs were assessed. We demonstrate that LXR deactivation resulted in a lipid composition with increased overall chain lengths and reduced levels of monounsaturation, whereas LXR activation increased the amount of monounsaturated lipids and led to a reduction in the overall chain length. However, these changes did not affect the barrier functionality. In conclusion, LXR deactivation led to the development of FTMs with improved lipid properties, which mimic the lipid composition of NHS more closely. These novel findings may contribute to design interventions to normalize SC lipid composition of atopic dermatitis patients.  相似文献   

12.
The lipid lamellae present in the outermost layer of the skin, the stratum corneum (SC), form the main barrier for diffusion of molecules across the skin. The main lipid classes in SC are cholesterol (CHOL), free fatty acids (FFA) and at least nine classes of ceramides (CER), referred to as CER1 to CER9. In the present study the phase behaviour of four synthetic CER, either single or mixed with CHOL or CHOL and FFA, has been studied using small and wide angle X-ray diffraction. The lipid mixtures showed complex phase behaviour with coexistence of several phases. The results further revealed that the presence of synthetic CER1 as well as a proper composition of the other CER in the mixture were crucial for the formation of a phase with a long periodicity, characteristic for SC lipid phase behaviour. Only a mixture containing synthetic CER1 and CER3, CHOL and FFA showed similar phase behaviour to that of SC.  相似文献   

13.
Free ceramides were isolated from human platelets. Their structures were unequivocally determined by gas-liquid chromatography-mass spectrometry of the trimethylsilyl ether derivatives. The major components were N-(palmitoyl) sphingosine, N-(stearoyl) sphingosine, N-(eicosanoyl) sphingosine, N-(docosanoyl) sphingosine, N-(tetracosanoyl) sphingosine, and N-(tetracosenoyl) sphingosine. Sphinganine-and sphingadienine-containing ceramides as well as ceramides containing other unsaturated acids were also present. The amount of ceramides was determined by quantitative gas-liquid chromatography, using radioactive ceramide as internal standard and synthetic crystalline ceramides for comparison of peak areas. The concentration of ceramides was found to be 1.31 micro g/10(9) platelets or 0.47 micro g/mg of platelet protein.  相似文献   

14.
Schistosoma mansoni cercariae recognize the human host with a sequence of behavioral responses particularly to chemical host cues. After attaching to the skin surface, cercariae are stimulated by so far unknown skin components to hold enduring contact with the skin and to start creeping towards entry sites. We studied the chemical stimulus of human skin for the cercarial enduring contact response by fractionation of human and pig skin surface extracts and offering the fractions to the cercariae via membrane filters. Enduring contact was stimulated exclusively by ceramides, specific lipids of the uppermost skin layers. This chemical cue differs from the 6 chemical host signals used by S. mansoni cercariae in other behavioral steps of host invasion, and thus underlines the specialization of S. mansoni cercariae particularly in chemical host signals. All together, the enduring contact response of the cercariae is, like the other phases of host invasion, well adapted to the chemical properties of human skin.  相似文献   

15.
Inflammation is a complex biological process involving a variety of locally produced molecules, as well as different types of white blood cells. Some of the so-called inflammatory mediators include cytokines, chemokines, interleukins, prostaglandins, or bioactive lipids, all of which provide protection from infection and foreign substances, such as bacteria, yeast, viruses or some chemicals. Under some circumstances, however, the organism inappropriately activates the immune system triggering an inflammatory response in the absence of foreign insults thereby leading to the establishment of autoimmune diseases. Therefore, inflammation must be tightly regulated in order to ensure sufficient protection to the organism in the absence of unwanted, and at times dangerous, side effects. Increasing experimental evidence implicates sphingolipids as major inducers of inflammatory responses and regulators of immune cell functions. In particular, ceramides and sphingosine 1-phosphate have been extensively implicated in inflammation, and ceramide 1-phosphate has also been shown to participate in these processes. The present review highlights novel aspects on the regulation of inflammation by sphingolipids, with special emphasis to the role played by ceramide 1-phoshate and ceramide kinase, the enzyme responsible for its biosynthesis, in inflammatory responses.  相似文献   

16.
A screening test for serine proteinase inhibitors revealed trypsin and urokinase inhibitors in the extract of human cornified cells. No inhibition for α-chymotrypsin, thrombin or plasmin was detected. Characterization of the inhibitors separated with a Sephacryl S-200 gel column demonstrated that: 1) trypsin inhibitor with a molecular weight of 45,000 was labile to heat, acid and alkali and showed temporary inhibition, and 2) urokinase inhibitor with a molecular weight of 35,000 was found relatively stable and exhibited time dependent inhibition. Both were distinct from a known thiol proteinase inhibitor which showed high stability and immediate inhibition. Regulatory roles of serine proteinase inhibitors are postulated.  相似文献   

17.
18.
Quantitative determination of the neutral glycosyl ceramides in human blood   总被引:34,自引:0,他引:34  
A method is described for the qualitative and quantitative estimation of four neutral glycosyl ceramides from human plasma and erythrocytes. Total lipids extracted from 50 ml of plasma or packed erythrocytes were separated by silicic acid chromatography into neutral lipids, a fraction of mixed glycolipids that was eluted with acetone-methanol 9:1, and phospholipids. After mild alkali-catalyzed methanolysis to remove contaminants from the crude fraction of glycolipids, individual glycosyl ceramides were isolated by preparative thin-layer chromatography. The oligosaccharide portions of these lipids were characterized by cleavage with methanolic hydrogen chloride and gas chromatography of the O-trimethylsilyl methyl glycosides. It was possible to study the composition of the carbohydrate and sphingolipid base fractions in the same gas chromatographic analysis. With mannitol as an internal standard for gas chromatographic estimation of glucose, concentrations of each of the glycosyl ceramides were determined with a precision of about 10%. Recoveries of the lipids from plasma varied with the complexity of the oligosaccharide moiety and ranged from 94% with glucosyl ceramide to 71% with globoside. Concentrations of the four glycosyl ceramides in plasma and in erythrocytes were determined for samples from young, healthy males. Amounts of glycolipid as low as 0.1 micromole can be determined conveniently by this procedure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号