首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plutella xylostella L. (Lepidoptera: Plutellidae) is an important pest causing significant losses to vegetables worldwide. Insecticides resistance in P. xylostella is a serious issue for scientists since last 30 years. However, deltamethrin and Bt Cry1Ac are commonly used insecticides against P. xylostella but studies involving development of resistance in P. xylostella against these two insecticides at different temperatures are lacking. The current study was aimed to find out the toxicity of deltamethrin and Bt Cry1Ac, and resistance development in P. xylostella. Results showed that the positive correlation between the temperature and toxicities of deltamethrin and Bt Cry1Ac. The results indicated −0.051, −0.049, −0.047, and −0.046 folds of deltamethrin resistance at 15 °C, 20 °C, 25 °C, and 30 °C temperatures, respectively from 1st to 12th generations. The toxicity of Bt Cry1Ac after 24 h was 2.2 and 4.8 folds on 1st generation at 20 °C and 25 °C temperatures, respectively compared to the toxicity recorded at 15 °C (non-overlapping of 95% confidence limits). Based on the results of this study, it is concluded that the temperature has a positive correlation with the toxicity of deltamethrin and Bt Cry1Ac against the larvae of P. xylostella. This study suggests that deltamethrin and Bt Cry1Ac can be included in the management program of P. xylostella on many vegetable crops. The baseline susceptibility data might be helpful to understand the resistance mechanisms in P. xylostella.  相似文献   

2.
Life table parameters of diamondback moth, Plutella xylostella (L.), were studied at seven constant temperatures (10, 15, 20, 25, 28, 30, and 35 °C) on two brassicaceous host plants, cauliflower (Brassica oleracea var. botrytis) and cabbage (Brassica oleracea var. capitata). Survival, longevity and reproduction were examined and used to construct a life table. The survival at immature stages varied from 53.0 to 84.1% on cauliflower and from 58.3 to 86.2% on cabbage at 10–30 °C. P. xylostella did not survive at 35 °C. The female adult longevity ranged from 12.9 days at 30 °C to 30.4 days at 10 °C on cauliflower and 9.7 days at 30 °C to 40.0 days at 15 °C on cabbage. The net reproductive rate (R0) increased with increasing temperature, while generation time (T) decreased. This caused the intrinsic rate of increase (rm) to increase from 0.038 to 0.340 on cauliflower and 0.033 to 0.315 on cabbage from 10 to 28 °C. The significant decrease in R0 caused a decrease in rm at 30 °C. The rm values on cauliflower were significantly higher than cabbage at 15, 20, 28 and 30 °C.  相似文献   

3.
Thrips tabaci Lindeman (Thysanoptera: Thripidae) is one of the most important pests of asparagus in China. In this study the effects of five constant temperatures (15, 20, 25, 30 and 35 °C) on the growth, survivorship and reproduction of Proprioseiopsis asetus (Chant) (Acari: Phytoseiidae) fed on T. tabaci was examined under laboratory conditions. Development time of immatures decreased with increasing temperature. The lower egg-to-adult developmental threshold (T 0) and thermal constant (K) of P. asetus were estimated at 15.2 °C and 75.8 degree days by means of a linear model. Fertilized females fed on T. tabaci produced offspring of both sexes, whereas the offspring sex ratio [♀/(♀ + ♂)] of P. asetus at 20–35 °C was female-biased (0.68–0.78) and not significantly influenced by temperature. Survivorship during immature development was significantly influenced by temperature, and was especially low at 15 °C. Pre- and post-oviposition periods of fertilized females shortened with the increase in temperature. The longest oviposition period was 20.4 days, at 25 °C, whereas at 15 °C the mites did not reproduce. Maximum average life time fecundity and mean daily fecundity was recorded at 25 and 35 °C, respectively; the intrinsic rate of increase ranged from 0.05 (20 °C) to 0.17 (35 °C). The results indicate the capability of P. asetus to develop and reproduce at a broad range of temperatures, especially above 25 °C, which can be used for better management of T. tabaci in asparagus.  相似文献   

4.
Temperature-mediated plasticity in life history traits strongly affects the capability of ectotherms to cope with changing environmental temperatures. We hypothesised that temperature-mediated reaction norms of ectotherms are constrained by the availability of essential dietary lipids, i.e. polyunsaturated fatty acids (PUFA) and sterols, as these lipids are involved in the homeoviscous adaptation of biological membranes to changing temperatures. A life history experiment was conducted in which the freshwater herbivore Daphnia magna was raised at four different temperatures (10, 15, 20, 25°C) with food sources differing in their PUFA and sterol composition. Somatic growth rates increased significantly with increasing temperature, but differences among food sources were obtained only at 10°C at which animals grew better on PUFA-rich diets than on PUFA-deficient diets. PUFA-rich food sources resulted in significantly higher population growth rates at 10°C than PUFA-deficient food, and the optimum temperature for offspring production was clearly shifted towards colder temperatures with an increased availability of dietary PUFA. Supplementation of PUFA-deficient food with single PUFA enabled the production of viable offspring and significantly increased population growth rates at 10°C, indicating that dietary PUFA are crucial for the acclimation to cold temperatures. In contrast, cumulative numbers of viable offspring increased significantly upon cholesterol supplementation at 25°C and the optimum temperature for offspring production was shifted towards warmer temperatures, implying that sterol requirements increase with temperature. In conclusion, essential dietary lipids significantly affect temperature-mediated reaction norms of ectotherms and thus temperature-mediated plasticity in life history traits is subject to strong food quality constraints.  相似文献   

5.
Effects of temperature on life history traits of the dominant calanoid Eodiaptomus japonicus were examined to evaluate its population dynamics in Lake Biwa (Japan). Embryonic and post-embryonic development times and reproduction were determined in the laboratory at four temperatures (10, 15, 20 and 25 °C) and under ad libitum food condition. Post-embryonic development time of E. japonicus from hatching to adult female decreased with increasing temperature from 67.9 to 15.1 days. Males reached the adult stage 1–6 days earlier than the females. Only 15 % of the individuals survived until the adult stage at 10 °C, while 40 % did so at >15 °C. Egg production also depended on temperature. A power function of temperature on instantaneous growth rate predicted a value of <0.06 day?1 when water temperature was below 10 °C, suggesting that E. japonicus retards its growth during winter. The null value obtained at 8.6 °C for the computed population growth rate supports the idea of an overwintering strategy. Responses of life history traits to temperature suggested that in conditions where there was no food limitation, E. japonicus in Lake Biwa would be able to take advantage of the rise of temperature predicted in the context of global climate change.  相似文献   

6.
7.
The effect of four different temperatures (15, 20, 25 and 30°C) on the in vitro growth of 19 isolates of Pandora blunckii and 14 isolates of Zoophthora radicans from Plutella xylostella larvae was investigated. Both species grew more at 20 and 25°C than the other two temperatures. However, Z. radicans grew more than P. blunckii at 20 and 25°C. Within each species there were differences amongst: all isolates regardless of geographical origin, isolates from different countries and isolates from Mexico. No relationship was found between optimal growth temperature and geographical origin. This represents the first report of the relationship between temperature and the in vitro growth of P. blunckii. The ecological role of this large variability amongst isolates within each species is discussed.  相似文献   

8.
Mealybugs have strong associations with their host plants due to their limitations for dispersal. Thus, environmental conditions and host quality may impact the biological traits of mealybugs. To the best of our knowledge, we are the first to report on the biology of a Brazilian population of the striped mealybug Ferrisia virgata Cockerell (Hemiptera: Pseudococcidae), which has recently been reported to infest cotton in Brazil. We evaluated the development and reproductive performance of F. virgata reared under different temperatures (25, 27, and 28°C) and mating status. The type of reproduction was also studied with insects reared on a factitious host and on cotton plants. Shorter development was obtained at 28°C as follows: nymphs generating males and females exhibited three and four instars with a mean duration of 19.1 and 20.5 days, respectively. The nymphal viability ranged from 77 to 96%, and was highest at 25°C. Females reared at 28°C initiated reproduction earlier (16.4 days), but the reproductive period was similar in all temperatures (~16.2 days). Females produced more nymphs at 27 and 28°C (440 and 292 neonates) than at 25°C (277 neonates), although they lived longer at 25°C (63 days). Ferrisia virgata females exhibited only sexual reproduction. Thus, only mated females produced offspring, whereas unmated females died without reproducing. Therefore, the studied population of F. virgata exhibited only sexual reproduction with high survival and offspring production when fed cotton. Furthermore, pumpkin is a feasible host for mass rearing this mealybug species in the laboratory, an opening avenue for future studies.  相似文献   

9.
The development and reproductive potential of an indigenous parasitoid, Aphelinus varipes (Förster), was studied at 15, 17, 20, 25, and 30 °C. Developmental durations decreased with increasing temperatures. The emergence rate was higher than 90 % at 15, 17, and 20 °C. Offspring sex ratios were 0.69, 0.54, and 0.70 at 17, 20, and 25 °C, respectively, but were 0.14 at 15 °C and 0.38 at 30 °C. Developmental zeros of females and males were calculated as 9.9 and 9.6 °C, respectively. The effective accumulative temperature (K) was 204.1 degree-days in both sexes. Fecundity peaked in early age after emergence, then gradually decreased in a fluctuating manner at 20 and 25 °C. Host feeding continued constantly during the life of female adults at two temperatures. Single female parasitoids produced 218.5 and 203.1 mummies at 20 and 25 °C, respectively, during their lifespans. Aphids killed by parasitoid host feeding numbered 79.1 at 20 °C and 63.8 at 25 °C. Longevities were 27.0 days at 20 °C and 20.6 days at 25 °C. Moreover, intrinsic rates of natural increase (r m) were estimated as 0.151 at 20 °C and 0.227 at 25 °C. We discuss the potential of A. varipes as biological control agents by comparing them with Aphidius colemani Viereck, which has been introduced to horticultural crops in greenhouses in Japan.  相似文献   

10.
Life table and predation of the predatory mite Neoseiulus longispinosus (Evans) on the red spider mite (RSM), Oligonychus coffeae (Nietner), a major pest of tea in India, were studied in the laboratory. Developmental time from egg to adult varied from 4 to 14 days at 30 to 15 °C, respectively; at 35 °C no larva survived. Survival of immature stages was more than 94 % at all temperatures. Threshold temperature for development of immature stages of females and males was 10 and 9.9 °C, respectively, and thermal constant was 84.03 degree-days for females and 80 for males. Sex ratio was female biased and temperature (20–30 °C) had no clear effect on sex determination. Egg hatchability was 73 % at 35 °C and >97 % at lower temperatures. Average number of eggs laid per female/day was higher at 30 °C than at 20 or 25 °C. The highest net reproductive rate (R 0) was 40.7, at 20 °C. Mean generation time (T) decreased from 28 to 13 days with temperature increasing from 20 to 30 °C. Weekly multiplication (6.5) and intrinsic rate of natural increase (r m ) (0.268) were highest at 30 °C. Males lived longer than females at every temperature tested. Longevity was highest at 20 °C (50 days for females and 55 for males). Survival and longevity were adversely affected by temperature above 30 °C. Daily consumption of prey increased with the advancement of predator’s life stages; adult females consumed the highest numbers of prey items, preferably larvae and nymphs.  相似文献   

11.
Clibanarius vitatus (Bosc) larvae were reared in twenty combinations of four salinities (15, 20, 25, and 30%) and five temperatures (15, 20, 25, 30 and 35%°C). No development was observed in any salinity at 15°C, but partial development occurred in all other test conditions. Metamorphosis to juvenile crabs was noted only at salinities of 25 and 30A% in combination with temperatures of 25 and 30°C. In general, development times were decreased at higher temperatures; no trend was evidence for salinity. Mortality of zoeae was usually highest at the time of the first molt and greatest overall mortality occurred during the megalopa stage prior to metamorphosis. Previous experiments (unpubl.) have shown that C. vittatus adults can tolerate temperature down to 5°C. It is suggested that geographic distribution of C. vittatus (Virginia, southward) is limited not by adult tolerances but by the inability iof the species to establish a breeding population. Larvae require two months at 25°C or above to metamorphose, and this condition is not met in areas north of Virginia.  相似文献   

12.
Laboratory studies were conducted on certain aspects of biology ofDiadegma semiclausum Hellén, a larval parasite of a crucifer pest,Plutella xylostella (L.). Within the range of 15°C to 35°C, the higher temperature, the shorter was the duration of larval and adult stages. Egg hatching and adult emergence were high at 15°C to 30°C but were significantly reduced at 35°C. The higher the temperature, the higher was the proportion of males produced. Temperature threshold was 5.74°C for eggs, 3.80°C for larvae, 5.91°C for pupae and 6.60°C for adults.D. semiclausum oviposition in the first threeP. xylostella larval instars produced more parasite males than females but oviposition in the fourth instar produced significantly more females than males. Parasite adults tended to emerge from their pupae from 06∶00 to 09∶00 hours although some emerged at other hours during the photophase. Adult longevity and production of eggs increased when adults were provided with a food source (honey) compared with no food or provision of water alone. Parasite adults survived and laid eggs for 28 days when provided with food but for only three days when deprived of food.  相似文献   

13.
Pesticide-induced effects in non-target organisms are a worldwide environmental problem and cladocerans have been used as test organisms to quantify the toxicity effects. However, little is known about the true risks of acceptable levels, when non-traditional end points such as sex determination, egg maturation, and teratogenesis are considered. Aims of the present study were to investigate the effects of sublethal concentrations of the fungicide carbendazim taking into account the above-mentioned endpoints and to evaluate their sensitivity to an environmental factor such as temperature, known to influence growth rates and sex determination in cladocerans. We quantified the effect on the life history variables of Moina micrura at two different temperatures using the life table demographic approach, starting with neonates. The median lethal concentration of carbendazim for M. micrura was 0.12 ± 0.01 mg l−1. The impacts of carbendazim were assessed in experiments conducted at 20°C (experiment 1) and 30°C (experiment 3) using four sublethal concentrations of carbendazim (0.01, 0.02, and 0.04) and controls. An additional experiment (experiment 2) on the next generation (F1) was conducted at 20°C, using the offspring of the second clutches of M. micrura from each of the corresponding treatments of the experiment 1. The increase in temperature from 20 to 30°C significantly reduced always the average lifespan and life expectancy at birth, while raised the rate of population increase, net reproductive rate, and reproductive effort, in controls but not in carbendazim treatments. Higher temperature also increased male/female ratio. The patterns of survivorship curves were weakly affected by carbendazim exposure, but increase in concentration of this fungicide reduced offspring production, reproductive rates, and the rate of population increase, more noticeable at the higher temperature. These detrimental effects were much more striking in the F1 experiment, in which females were unable to produce viable offspring in the two highest carbendazim concentrations, although survival and swimming behavior were not significantly affected. This indicates that sensitivity to the toxicant is greater during egg development and that the fungicide acts as an endocrine disruptor. The presence of carbendazim in the medium resulted in higher male production as compared with controls, indicating also its effect on egg development. We also encountered a few individuals, with abnormal sexual secondary characters (males with reduced antennule length, similar to female antennules) at the highest carbendazim concentration. The role of carbendazim on the demography of cladocerans in natural systems, subject to temperature increase, is discussed taking into account the persistence of this chemical and its elevated impact in the successive generations (through the higher sensitivity of the developing eggs to the chemical at high temperatures). Cladoceran bioassays starting with neonates, which usually utilize offspring as sublethal endpoints should include the first generation to evaluate fecundity responses.  相似文献   

14.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

15.
Increasing energy costs force glasshouse growers to switch to energy saving strategies. In the temperature integration approach, considerable daily temperature variations are allowed, which not only have an important influence on plant growth but also on the development rate of arthropods in the crop. Therefore, we examined the influence of two constant temperature regimes (15 °C/15 °C and 20 °C/20 °C) and one alternating temperature regime (20 °C/5 °C, with an average of 15 °C) on life table parameters of Phytoseiulus persimilis and Neoseiulus californicus and their target pest, the two-spotted spider mite Tetranychus urticae at a 16:8 (L:D) h photoperiod and 65 ± 5 % RH. For females of both predatory mites the alternating temperature regime resulted in a 25–30 % shorter developmental time as compared to the corresponding mean constant temperature regime of 15 °C/15 °C. The immature development of female spider mites was prolonged for 7 days at 15 °C/15 °C as compared to 20 °C/5 °C. With a daytime temperature of 20 °C, no differences in lifetime fecundity were observed between a nighttime temperature of 20 and 5 °C for P. persimilis and T. urticae. The two latter species did show a higher lifetime fecundity at 20 °C/5 °C than at 15 °C/15 °C, and their daily fecundity at the alternating regime was about 30 % higher than at the corresponding mean constant temperature. P. persimilis and T. urticae showed no differences in sex ratio between the three temperature regimes, whereas the proportion of N. californicus females at 15 °C/15 °C (54.2 %) was significantly lower than that at 20 °C/5 °C (69.4 %) and 20 °C/20 °C (67.2 %). Intrinsic rates of increase were higher at the alternating temperature than at the corresponding mean constant temperature for both pest and predators. Our results indicate that thermal responses of the studied phytoseiid predators to alternating temperature regimes used in energy saving strategies in glasshouse crops may have consequences for their efficacy in biological control programs.  相似文献   

16.
The influence of different temperatures 10, 15, 20, and 25°C on the food consumption, growth, moulting rate, and respiration of Palaemon pacificus (Stimpson) from Langebaan Lagoon, west coast of South Africa, was studied under laboratory conditions. At 10°C mortality was high so that food consumption and moulting rate could not be determined as these were very low. At higher temperatures, food consumption was found to be temperature dependent, the rate at 25°C being twice that at 15°C. Growth rate was most favourable at 25°C. At 28°C growth rate was lower than at 20°C but higher than at 15°C. The intermoult period was 17 days at 15°C, and 11 and 10 days at 20, and 25°C, respectively. It seems that from an energetic point of view, 25°C is the most favourable temperature for P. pacificus. Several indices of growth efficiency at different temperatures are presented. The appearance of this prawn in South African west coast localities such as Langebaan during the summer and its disappearance during winter, can be explained by its temperature preferences. The possibility that thermal pollution from a nuclear power station may be beneficial to this prawn, is discussed.  相似文献   

17.
Plutella xylostella in the temperate zone shows a clear seasonal change in adult body size. In the laboratory, large and small moths were produced during immature stages at 15°C and 25°C, respectively. These moths were then used to evaluate longevity, age-specific flight ability, flight ability of mated and unmated females, and the influence of flight experience on the subsequent reproductive success. The large moths lived longer and displayed a greater flight ability over 3 weeks. Irrespective of body size, unmated females flew for a longer time than mated females, and flight experience affected their subsequent reproductive success. Females of both sizes mated and laid eggs soon after emergence, without any obvious pre-reproductive period. More flight experience did not delay oviposition, but did reduce egg production. It is likely that large moths with a longer adult life span and greater flight ability are better fitted for long-distance flight and more fecund than small ones. These experimental results may explain why long-distance migration ofP. xylostella is mostly seen during cool seasons, when relatively large moths with long forewing appear in the field.  相似文献   

18.
Oomyzus sokolowskii is alarval-pupal parasitoid of diamondback moth, Plutella xylostella. In a host stage preference test, the parasitoid parasitised all larval and pupal stages, but exhibited a strong preference for larvaeover prepupae or pupae, and did not show a preference among the larval instars. At 25°C, the developmental time, number and sex ratio of offspring per host pupa, and successful parasitism did not differ significantly among parasitoids reared from host larvae of different instars, indicating similar host suitability between larvae of different instars. Mean developmental times from egg to adult at 20, 22.5, 25, 30, 32.5, and 35°C were 26.5,21.0, 16.0, 12.7, 11.9 and 13.4 days, respectively. The favourable temperature range for development, survival, and reproduction of the parasitoid was 20--30°C. However, wasps that developed and emerged at a favourable temperature could parasitise effectively at 32--35°C for 24 hours. Life-fertility table studies at 20, 25, and 30°C showed that each female wasp on average parasitised 3.1, 13.2, 6.8 larvae of diamondback moth and produced 20.5, 92.1, 50.4 offspring, respectively, during her lifetime. The highest intrinsic rate of natural increase (r m) of 0.263 female/day was reached at 30°C as a result of the short mean generation time at this temperature compared to that at 20 and 25°C, suggesting that the parasitoid had the highest potential for population growth at relatively high temperatures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Laboratory investigations on life history parameters of 2 coexisting cladocerans (Daphnia obtusa. Moina brachiata) from a nearly temporary pond in South Germany revealed that the species have different temperature tolerances and temperature optima. D. obtusa experienced the highest reproductive success at 15 and 20 °C and was able to survive and to reproduce at 2 °C but died at 30 °C. The reproductive success of M. brachiata was highest at 25 and 30 °C and the species could not withstand temperatures <15 °C and ≥35 °C. At temperatures between approximately 20 and 25 °C, where both cladocerans coexisted in nature, M. brachiata showed a faster population growth due to its approximately twofold higher egg production rates (10–12 eggs female−1 day−1 compared to approximately 5 eggs female−1 day−1 in D. obtusa) and its shorter juvenile development (3.3 and 2.4 days compared to 6.3 and 5.3 days in D. obtusa); M. brachiata needs generally only 3 molts to reach maturity while D. obtusa requires 5–6 molts.  相似文献   

20.
The life history of Thrips palmi Karny on eggplant (Solanum melongena L.) leaves was studied based on the age stage and two sex-life tables at 16, 19, 22, 25, and 31?°C. The intrinsic rate of increase (r) at these temperatures was 0.0427, 0.0566, 0.0979, 0.1738, and 0.2237?day?1, respectively. The relationship among the gross reproductive rate (GRR), the net reproductive rate (R 0), and the pre-adult survivorship (l a) is consistent with R 0?<?l a?×?GRR?<?GRR for all results at different temperatures. The mean generation time was 47.52, 38.33, 29.52, 19.81, and 13.88?days, respectively. The developments of pre-adult and adult stages were faster in males than in females. The means of developmental periods for each developmental stage decreased with increases of temperature. The maximum life span of female adults was noted at 56.67?days, whereas that of males was 50.66?days at 16?°C. The maximum female fecundity (64.18?eggs/female) was recorded at 25?°C and the lowest (23.38 eggs/female) at 16?°C. Life table data could be used to project population growth, to design mass rearing programs, and to establish management tactics to control insect pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号