首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cellular signalling》2014,26(9):1888-1896
Obesity is a serious health problem worldwide associated with an increased risk of life-threatening diseases such as type 2 diabetes, atherosclerosis, and certain types of cancer. Understanding the molecular basis of adipogenesis and fat cell development in obesity is essential to identify new biomarkers and therapeutic targets for the development of anti-obesity drugs. Recent computational and experimental studies have shown that microRNAs (miRNAs) appear to play regulatory roles in many biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. In addition, many miRNAs are dysregulated in metabolic tissues from obese animals and humans, which potentially contributes to the pathogenesis of obesity-associated complications. The discovery of circulating miRNAs has highlighted their potential as both endocrine signaling molecules and disease markers. The potential of miRNA based therapeutics targeting obesity is highlighted as well as recommendations for future research which could lead to a breakthrough in the treatment of obesity.  相似文献   

2.
An excess of fat mass excess predisposes to multiple complications such as type 2 diabetes, cardiovascular diseases or cancer. A dysregulation of lipid metabolism contributes to the development of obesity and the metabolic syndrome. Recent data on lipid mobilization in adipose tissue have revealed a complex pathway involving a human specific hormonal control of lipolysis via the natriuretic peptides and a new triglyceride lipase, ATGL. Activation of fatty acid reesterification and oxidation can lead to an increase in fatty acid utilization. Targeting these key steps of lipid metabolism (adipose tissue lipolysis and fatty acid oxidation) constitutes a potential strategy for the treatment of obesity and associated metabolic disorders.  相似文献   

3.
Lipid metabolism plays an important role in cancer development due to the necessities of rapidly dividing cells to increase structural, energetic, and biosynthetic demands for cell proliferation. Basically, obesity, type 2 diabetes, and other related diseases, and cancer are associated with a common hyperactivated “lipogenic state.” Recent evidence suggests that metabolic reprogramming and overproduction of enzymes involved in the synthesis of fatty acids are the new hallmarks of cancer, which occur in an early phase of tumorigenesis. As the first evidence to confirm dysregulated lipid metabolism in cancer cells, the overexpression of fatty acid synthase (FAS) was observed in breast cancer patients and demonstrated the role of FAS in cancer. Other enzymes of fatty acid synthesis have recently been found to be dysregulated in cancer, including ATP-dependent citrate lyase and acetyl-CoA carboxylase, which further underscores the connection of these metabolic pathways with cancer cell survival and proliferation. The degree of overexpression of lipogenic enzymes and elevated lipid utilization in tumors is closely associated with cancer progression. The question that arises is whether the progression of cancer can be suppressed, or at least decelerated, by modulating gene expression related to fatty acid metabolism. Curcumin, due to its effects on the regulation of lipogenic enzymes, might be able to suppress, or even cause regression of tumor growth. This review discusses recent evidence concerning the important role of lipogenic enzymes in the metabolism of cancer cells and whether the inhibitory effects of curcumin on lipogenic enzymes is therapeutically efficacious.  相似文献   

4.
CD36 is a class B scavenger receptor observed in many cell types and tissues throughout the body. Recent literature has implicated CD36 in the pathogenesis of metabolic dysregulation such as found in obesity, insulin resistance, and atherosclerosis. Genetic variation at the CD36 loci have been associated with obesity and lipid components of the metabolic syndrome, with risk of heart disease and type 2 diabetes. Recently, non-cell bound CD36 was identified in human plasma and was termed soluble CD36 (sCD36). In this review we will describe the functions of CD36 in tissues and address the role of sCD36 in the context of the metabolic syndrome. We will also highlight recent findings from human genetic studies looking at the CD36 locus in relation to metabolic profile in the general population. Finally, we present a model in which insulin resistance, oxLDL, low-grade inflammation and liver steatosis may contribute to elevated levels of sCD36.  相似文献   

5.
Apolipoprotein A5 (apoA5) has an important role in lipid metabolism, specifically for triglyceride‐rich lipoproteins. Recently, evidence has emerged for an association between genetic variability at the APOA5 locus and increased risk of obesity and metabolic syndrome. However, its mechanism of action remains to be fully elucidated. Importantly, an intracellular role of apoA5 has been indicated since apoA5 is associated with cytoplasmic lipid droplets and affects intrahepatic triglyceride accumulation, as well as affecting intravascular triglyceride metabolism. Given that adipocytes provide the largest storage depot for energy in the form of triglyceride within the lipid droplets, and play a crucial role in the development of obesity, we highlight recent findings discussing the interaction of apoA5 with adipocytes or adipose tissue, indicating that apoA5 may act as a novel regulator to modulate triglyceride storage in adipocytes. We review the association of APOA5 gene polymorphisms with obesity and metabolic syndrome, and propose potential mechanisms by which apoA5 may increase susceptibility to these conditions. This review provides new insights into the physiological role of apoA5 and identifies a potential therapeutic target for obesity and associated disorders.  相似文献   

6.
细胞自噬是一种真核生物中高度保守的代谢过程,包括巨自噬、微自噬以及分子伴侣介导的自噬等。自噬过程可以清除受损的细胞器,降解糖原、脂类和蛋白质等生物大分子物质,供细胞重新利用,维持细胞内代谢平衡。自噬障碍与多种疾病的病理发生过程息息相关,包括肿瘤、2型糖尿病、肥胖、骨骼肌病以及神经退行性疾病等。脂肪组织是人体脂质储存的重要场所,广泛分布于全身各处,如内脏和皮下等。脂肪组织通过储存冗余脂肪并分泌脂肪因子,防止脂肪的异位堆积和脂毒性的发生,维持机体的脂质稳态。近期的许多研究表明,自噬进程深度参与脂肪细胞的细胞分化与能量代谢。因此,深入探究脂肪组织自噬过程与机体脂质稳态的调控关系,有利于揭示机体脂质平衡的内在机制,为新型药物靶点的开发提供扎实的理论依据和数据支持。本文就近年来关于自噬影响脂肪组织脂质代谢的最新研究进展作一综述。  相似文献   

7.
One of the major goals of this review was to identify obesity-specific gene profiles in animal models to help comprehend the pathogenic mechanisms and the prediction of the phenotypic outcomes of obesity and its associated metabolic diseases. The genomic examination of insulin-sensitive tissues, such as the adipose and hepatic tissues, has provided a wealth of information about the changes in gene expression in obesity and its associated metabolic diseases. The overexpression of genes related to inflammation, immune response, adhesion molecules, and lipid metabolism is a major characteristic of white adipose tissue, while the overexpression of the genes related to lipid metabolism, adipocyte differentiation, defense, and stress responses is noticeable in the non-alcoholic fatty liver of obese rodents. The hepatic-gene expression profiles led us to hypothesize that in obese rodents, the livers are supplied with large amounts of free fatty acids under conditions associated with obesity either through increased fatty acid biosynthesis or through decreased fatty acid oxidation, which may lead to increased mitochondrial respiratory activity. The wide list of genes that were identified in previous studies could be a source of potential therapeutic targets because most of these genes are involved in the key mechanisms of obesity development, from adipocyte differentiation to the disturbance of metabolism.  相似文献   

8.
Obesity and particularly its deleterious form, visceral adiposity, has reached a high prevalence in the industrialized world owing to the lack of exercise and the widely available energy-dense diet. As a consequence, cardiovascular diseases and metabolic disorders are afflicting an unprecedented number of individuals at a world-wide scale. Over the last decades, investigations have established firm links between visceral obesity and the development of cardiovascular diseases. Moreover, studies in the field of lipid partitioning have demonstrated that inadequacy of homeostatic mechanism ensuring adequate handling of energy surplus is associated with accumulation of visceral fat and lipid overload of internal organs, which are participating to the development of heart diseases. Visceral obesity and its metabolic consequences often referred to as the metabolic syndrome is associated with the production of an atherosclerosis prone milieu. In this review, clinical implications of visceral obesity on the development of cardiovascular disorders are reviewed along with important mechanisms participating to the development of these disorders. Implications and failure of lipid partitioning and some of the potential pathways mediating development of heart diseases are also covered in view of recent development of therapeutic options.  相似文献   

9.
Adipokines play a significant role in cardiometabolic diseases. Asprosin, a newly discovered adipokine, was first identified as a glucose-raising protein hormone. Asprosin also stimulates appetite and regulates glucose and lipid metabolism. Its identified receptors so far include Olfr734 and Ptprd. Clinical studies have found that asprosin may be associated with cardiometabolic diseases. Asprosin may have diagnostic and therapeutic potential in obesity, diabetes, metabolic syndrome and atherosclerotic cardiovascular diseases. Herein, the structure, receptors, and functions of asprosin and its relationship with cardiometabolic diseases are summarized based on recent findings.  相似文献   

10.
Dysregulation of lipid metabolism underlies many chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Therefore, understanding enzymatic mechanisms controlling lipid synthesis and degradation is imperative for successful drug discovery for these human diseases. Genes encoding α/β hydrolase fold domain (ABHD) proteins are present in virtually all reported genomes, and conserved structural motifs shared by these proteins predict common roles in lipid synthesis and degradation. However, the physiological substrates and products for these lipid metabolizing enzymes and their broader role in metabolic pathways remain largely uncharacterized. Recently, mutations in several members of the ABHD protein family have been implicated in inherited inborn errors of lipid metabolism. Furthermore, studies in cell and animal models have revealed important roles for ABHD proteins in lipid metabolism, lipid signal transduction, and metabolic disease. The purpose of this review is to provide a comprehensive summary surrounding the current state of knowledge regarding mammalian ABHD protein family members. In particular, we will discuss how ABHD proteins are ideally suited to act at the interface of lipid metabolism and signal transduction. Although, the current state of knowledge regarding mammalian ABHD proteins is still in its infancy, this review highlights the potential for the ABHD enzymes as being attractive targets for novel therapies targeting metabolic disease.  相似文献   

11.
Despite decades of research, obesity and diabetes remain major health problems in the USA and worldwide. Among the many complications associated with diabetes is an increased risk of cardiovascular diseases, including myocardial infarction and heart failure. Recently, microRNAs have emerged as important players in heart disease and energy regulation. However, little work has investigated the role of microRNAs in cardiac energy regulation. Both human and animal studies have reported a significant increase in circulating free fatty acids and triacylglycerol, increased cardiac reliance on fatty acid oxidation, and subsequent decrease in glucose oxidation which all contributes to insulin resistance and lipotoxicity seen in obesity and diabetes. Importantly, MED13 was initially identified as a negative regulator of lipid accumulation in Drosophilia. Various metabolic genes were downregulated in MED13 transgenic heart, including sterol regulatory element-binding protein. Moreover, miR-33 and miR-122 have recently revealed as key regulators of lipid metabolism. In this review, we will focus on the role of microRNAs in regulation of cardiac and total body energy metabolism. We will also discuss the pharmacological and non-pharmacological interventions that target microRNAs for the treatment of obesity and diabetes.  相似文献   

12.
由于世界范围内营养条件和生活方式的变化,肥胖及其相关的代谢性疾病已成为当前威胁人类健康的重要因素之一.在能量摄取和消耗以及体内脂肪储存、分解和脂肪组织重塑的研究中,人们逐渐认识到脂质过量及异位堆积将导致代谢组织处于慢性炎症状态,这开启了肥胖相关组织炎症研究的新方向.固有淋巴细胞(innate lymphoid cell...  相似文献   

13.
14.
Obesity is a condition characterized by excess adipose tissue that results from positive energy balance and is the most common metabolic disorder in the industrialized world. The obesity epidemic shows no sign of slowing, and it is increasingly a global problem. Serious clinical problems associated with obesity include an increased risk for type 2 diabetes, atherosclerosis, and cancer. Hence, understanding the origin and development of adipocytes and adipose tissue will be critical to the analysis and treatment of metabolic diseases. Historically, albeit incorrectly, adipocytes were thought to be inert cells whose singular function was lipid storage. It is now known that adipocytes have other critical functions; the most important include sensitivity to insulin and the ability to produce and secrete adipocyte-specific endocrine hormones that regulate energy homeostasis in other tissues. Today, adipocytes are recognized as critical regulators of whole-body metabolism and known to be involved in the pathogenesis of a variety of metabolic diseases. All cells come from other cells and many cells arise from precursor cells. Adipocytes are not created from other adipocytes, but they arise from precursor cells. In the last two decades, scientists have discovered the function of many proteins that influence the ability of precursor cells to become adipocytes. If the expansion of the adipose tissue is the problem, it seems logical that adipocyte development inhibitors could be a viable anti-obesity therapeutic. However, factors that block adipocyte development and limit adipocyte expansion also impair metabolic health. This notion may be counterintuitive, but several lines of evidence support the idea that blocking adipocyte development is unhealthy. For this reason it is clear that we need a better understanding of adipocyte development.  相似文献   

15.
肠道菌群与能量代谢密切相关,其组成和代谢紊乱可通过多种途径导致胰岛素抵抗,肥胖和2型糖尿病。黄连素因具有减重、降糖、调脂等作用被广泛用于肥胖、2型糖尿病及非酒精性脂肪性肝病等代谢性疾病的辅助治疗;研究表明,黄连素可调节肠道菌群的组成和代谢,改善肠道微生态环境,从而改善胰岛素抵抗和代谢。本文综述了黄连素通过肠道菌群-炎症轴在干预代谢性疾病的研究进展,以期为代谢性疾病的治疗寻找新的策略,并为今后该领域的深入研究提供指导意义。  相似文献   

16.
Nowadays, obesity is considered as a serious and growing global health problem. It is documented that the overweight and obesity are major risk factors for a series of noncommunicable diseases, and in recent years, the obesity‐cancer link has received much attention. Numerous epidemiological studies have shown that obesity is associated with increased risk of several cancer types, including colon, breast, endometrium, liver, kidney, esophagus, gastric, pancreatic, gallbladder, and leukemia, and can also lead to poorer treatment. We review here the epidemiological and experimental evidences for the association between obesity and cancer. Specifically, we discuss potential mechanisms focusing how dysfunctional angiogenesis, chronic inflammation, interaction of proinflammatory cytokines, endocrine hormones, and adipokines including leptin, adiponectin insulin, growth factors, estrogen, and progesterone and strikingly, cell metabolism alteration in obesity participate in tumor development and progression, resistance to chemotherapy, and targeted therapies such as antiangiogenic and immune therapies.  相似文献   

17.
The incidence of diseases characterized by a dysregulation of lipid metabolism such as obesity, diabetes and atherosclerosis is rising at alarming rates, driving research to uncover new therapies to manage dyslipidemias and resolve the metabolic syndrome conundrum. Autophagy and lipid homeostasis – both ancient cellular pathways – have seemingly co-evolved to share common regulatory elements, and autophagy has emerged as a prominent mechanism involved in the regulation of lipid metabolism. This review highlights recent findings on the role of autophagy in the regulation of cellular cholesterol homeostasis and lipoprotein metabolism, with special emphasis on macrophages. From modulation of inflammation to regulation of cellular cholesterol levels, a protective role for autophagy in atherosclerosis is emerging. The manipulation of autophagic activity represents a new possible therapeutic approach for the treatment complex metabolic disorders such as obesity and the metabolic syndrome.  相似文献   

18.
Because of its growing prevalence in Western countries, the metabolic syndrome, a common metabolic disorder that clusters a constellation of abnormalities, including central obesity, hypertension, dyslipidemia and insulin resistance, is emerging as one of the most important public health problems in the world, taking into account that it is a major risk factor mainly for type 2 diabetes and cardiovascular diseases, and also for many types of cancer. Although the pathogenesis of this syndrome is complex and not fully understood, obesity and insulin resistance, accompanied by an altered profile of number of hormones and cytokines produced by the adipose tissue, seem to be the main causative agents. A prime therapeutic approach to the prevention and treatment of this syndrome involves lifestyle changes. Among dietary modifications, dietary fiber intake could play an interesting role in the management of metabolic syndrome through different mechanisms related to its dietary sources, specific chemical structure and physical properties, or fermentability in the gut. According to all of these variables, the different types of dietary fibers have been reported to take part in the control of body weight, glucose and lipid homeostasis, insulin sensitivity and in the regulation of many inflammation markers involved in the pathogenesis of metabolic syndrome, and which are also considered to be among its features.  相似文献   

19.
The mechanistic target of rapamycin is a protein kinase that, as part of the mechanistic target of rapamycin complex 1 (mTORC1), senses both local nutrients and, through insulin signalling, systemic nutrients to control a myriad of cellular processes. Although roles for mTORC1 in promoting protein synthesis and inhibiting autophagy in response to nutrients have been well established, it is emerging as a central regulator of lipid homeostasis. Here, we discuss the growing genetic and pharmacological evidence demonstrating the functional importance of its signalling in controlling mammalian lipid metabolism, including lipid synthesis, oxidation, transport, storage and lipolysis, as well as adipocyte differentiation and function. Defining the role of mTORC1 signalling in these metabolic processes is crucial to understanding the pathophysiology of obesity and its relationship to complex diseases, including diabetes and cancer.  相似文献   

20.
Metabolic diseases continue to afflict most of the U.S. population. Advancements in gut microbiota research have led to the discovery of various functional roles of microorganisms that influence the development of obesity and co-morbidities including type 2 diabetes, non-alcoholic fatty liver disease and cardiovascular disease. Many mechanisms behind these host-microbe interactions stem from processes involving the intestinal epithelium including lipid metabolism. Thus, the purpose of this review is to discuss gut microbe-mediated changes in intestinal physiology and lipid metabolism that contribute to obesity, type 2 diabetes, non-alcoholic fatty liver disease and cardiovascular disease. Within each disease state, the causal role of bacteria in both driving disease development and protecting against metabolic disease will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号