首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fallow field biotopes that develop from abandoned rice fields are man‐made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding.  相似文献   

2.
Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito ( Culex tarsalis ), the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectus californicus and alkali bulrush, Schoenoplectus maritimus ), and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae), was the most abundant phylum recovered from C . tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria , Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C . tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.  相似文献   

3.
The distribution of mosquito populations is spatially heterogeneous and influenced by factors acting at a wide range of scales. The aim of this study was to assess the role of environmental heterogeneity at the landscape level in shaping the composition of immature mosquito communities inhabiting surface water habitats. The Paraná Lower Delta (Argentina) is a temperate wetland that extends along a 1º north–south gradient and presents high landscape heterogeneity, due to the combined action of geomorphology, hydrology and human intervention. Immature mosquitoes were collected every 2 weeks (Nov 2011–April 2012) from surface water habitats within 11 peridomestic areas interspersed along a 75 km north–south transect. The environment was quantified by 24 variables regarding the geomorphology, geography, economic use, climate, landcover and topography of each site and its surroundings at three radii. The association between the mosquito assemblage and the environment was tested by two multivariate approaches, the community-based outlying mean index and by-species generalized linear models. The former explained 93.6 % of the marginality of all taxa as a function of the type and diversity of landcover, precipitation, presence of cattle and altitude. The niche of six species, most of which were floodwater mosquitoes of the genera Ochlerotatus and Psorophora, deviated significantly from uniformity. The by-species approach rendered significant models for four species as a function of landcover type and precipitation. Both methodologies were broadly consistent in pointing that landscape elements affect the distribution of immature mosquitoes, thereby shaping the composition of the mosquito assemblage in peridomestic environments within wetlands.  相似文献   

4.
The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase.  相似文献   

5.

In the Sacramento Valley (California, USA), rice (Oryza sativa L.) fields are an economically important crop and productive habitats for the mosquito species Culex tarsalis and Anopheles freeborni. Since 2010, approximately 150 km2 of conventional and 16 km2 of organic rice have been grown in Sacramento and Yolo Counties. These fields are often within mosquito flight-range of both rural towns and urban centers. Culex tarsalis are highly competent vectors of West Nile virus, and An. freeborni are aggressive, mammalophagic, nuisance biters. The Sacramento–Yolo Mosquito and Vector Control District provides mosquito control for the two counties in its jurisdiction. The principles of Integrated Pest Management are used to control mosquitoes in rice growing areas, relying upon a range of surveillance and control interventions. Larvae are controlled by limiting habitats that enable development of immature mosquitoes while balancing agricultural and wildlife needs, applying larvicides, and the use of Gambusia affinis (mosquitofish). Adult mosquitoes are controlled by ultra-low volume pesticide applications. The program was assessed for larval and adult mosquito control efficacy and areas of programmatic improvement identified. Because rice fields are productive habitats for mosquitoes, complete elimination of the habitat is not a feasible goal, thus efforts are aimed at interrupting disease transmission and reducing the number of mosquitoes that traverse into populated areas.

  相似文献   

6.
Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an important first step for understanding the dynamics of mosquito vector distributions under changing environmental features across landscapes of Thailand.  相似文献   

7.
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.  相似文献   

8.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

9.
The protein crystals produced by Bacillus thuringiensis israelensis (Bti) are used against the larvae of pestiferous flood-water mosquitoes in ephemeral wetlands. Although mosquito larvae are considered important predators on protozoans and bacteria, it is not known how a distinct reduction of mosquito larvae density in natural wetlands caused by application of Bti may indirectly affect these microbial communities. Here we show, in a large scale experiment in six natural wetlands, that the densities of heterotrophic protozoans was on an average 4.5 times higher in wetland areas treated with Bti than in control areas. In addition, the taxonomic richness of heterotrophic protozoans increased on an average of 60% in areas with Bti application compared to control areas. The increase in protozoan density and richness was fairly consistent among sites of different wetland habitats. We discuss the potential implications of our results for other parts of the ecosystem. Handling editor: K. Martens  相似文献   

10.
11.
Environmental disturbances such as deforestation, urbanization or pollution have been widely acknowledged to play a key role in the emergence of many infectious diseases, including mosquito-borne viruses. However, we have little understanding of how habitat isolation affects the communities containing disease vectors. Here, we test the effects of habitat type and isolation on the colonization rates, species richness and abundances of mosquitoes and their aquatic predators in water-filled containers in northwestern Thailand. For eight weeks water-filled containers were monitored in areas containing forest, urban and agricultural habitats and mixtures of these three. Mosquito larvae of the genera Aedes and Culex appeared to be differentially affected by the presence of the dominant predator; Toxorhynchites splendens (Culicidae). Therefore, a predation experiment was conducted to determine predator response to prey density and its relative effects on different mosquito prey populations. Colonization rates, species richness and abundances of mosquito predators were strongly related to forest habitat and to the distance from other aquatic habitats. Areas with more tree cover had higher predator species richness and abundance in containers. Containers that were close to surface water were more rapidly colonized than those further away. In all habitat types, including urban areas, when predators were present, the number of mosquito larvae was much lower. Containers in urban areas closer to water-bodies, or with more canopy cover, had higher predator colonization rates and species richness. T. splendens (Culicidae) preyed on the larvae of two mosquito genera at different rates, which appeared to be related to prey behaviour. This study shows that anthropogenic landscape modification has an important effect on the natural biological control of mosquitoes. Vector control programmes and urban planning should attempt to integrate ecological theory when developing strategies to reduce mosquito populations. This would result in management strategies that are beneficial for both public health and biodiversity.  相似文献   

12.
Lentic freshwater systems including those inhabited by aquatic stages of mosquitoes derive most of their carbon inputs from terrestrial organic matter mainly leaf litter. The leaf litter is colonized by microbial communities that provide the resource base for mosquito larvae. While the microbial biomass associated with different leaf species in container aquatic habitats is well documented, the taxonomic composition of these microbes and their response to common environmental stressors is poorly understood. We used indoor aquatic microcosms to determine the abundances of major taxonomic groups of bacteria in leaf litters from seven plant species and their responses to low concentrations of four pesticides with different modes of action on the target organisms; permethrin, malathion, atrazine and glyphosate. We tested the hypotheses that leaf species support different quantities of major taxonomic groups of bacteria and that exposure to pesticides at environmentally relevant concentrations alters bacterial abundance and community structure in mosquito larval habitats. We found support for both hypotheses suggesting that leaf litter identity and chemical contamination may alter the quality and quantity of mosquito food base (microbial communities) in larval habitats. The effect of pesticides on microbial communities varied significantly among leaf types, suggesting that the impact of pesticides on natural microbial communities may be highly complex and difficult to predict. Collectively, these findings demonstrate the potential for detritus composition within mosquito larval habitats and exposure to pesticides to influence the quality of mosquito larval habitats.  相似文献   

13.
14.
Saltmarsh breeding mosquitoes are an important source of vectors for arboviral transmission. In southern Australia, the most prominent vector borne disease, Ross River virus (Togaviridae: Alphavirus) (RRV), is transmitted by the saltmarsh mosquito (Diptera: Culicidae) Aedes camptorhynchus (Thomson). However, the factors driving the abundance of this mosquito within and among saltmarshes are poorly understood. To predict the abundance of this mosquito within saltmarshes, the environmental conditions and aquatic invertebrate ecology of three temperate saltmarshes habitats were monitored over two seasons. Up to 44% of first-instar mosquito numbers and 21% of pupal numbers were accounted for by environmental variables. Samphire vegetation cover was a common predictor of first-instar numbers across sites although, between saltmarshes, aquatic factors such as high salinity, temperatures less than 22 °C and water body volume were important predictors. The identified predictors of pupal numbers were more variable and included high tides, waterbody volume and alkalinity. The composition of invertebrate functional feeding groups differed between saltmarshes and showed that an increased diversity led to fewer mosquitoes. It was evident that apparently similar saltmarshes can vary markedly in invertebrate assemblages, water availability and conditions through tidal inundations, rainfall or waterbody permanency. The present study advances insight into predictors of vector mosquito numbers that drive the risk of RRV outbreaks.  相似文献   

15.

Background

Knowing the underlying mechanisms of mosquito ecology will ensure effective vector management and contribute to the overall goal of malaria control. Mosquito populations show a high degree of population plasticity in response to environmental variability. However, the principle factors controlling population size and fecundity are for the most part unknown. Larval habitat and diet play a crucial role in subsequent mosquito fitness. Developing the most competitive insects for sterile insect technique programmes requires a “production” orientated perspective, to deduce the most effective larval diet formulation; the information gained from this process offers us some insight into the mechanisms and processes taking place in natural native mosquito habitats.

Methodology/Principal Findings

Fatty acid profiles and de-novo or direct assimilation pathways, of whole-individual mosquitoes reared on a range of larval diets were determined using pyrolysis gas chromatograph/mass spectrometry. We used elemental analysis and isotope ratio mass spectrometry to measure individual-whole-body carbon, nitrogen and phosphorous values and to assess the impact of dietary quality on subsequent population stoichiometry, size, quality and isotopic signature. Diet had the greatest impact on fatty acid (FA) profiles of the mosquitoes, which exhibited a high degree of dietary routing, characteristic of generalist feeders. De-novo synthesis of a number of important FAs was observed. Mosquito C:N stoichiometry was fixed in the teneral stage. Dietary N content had significant influence on mosquito size, and P was shown to be a flexible pool which limited overall population size.

Conclusions/Significance

Direct routing of FAs was evident but there was ubiquitous de-novo synthesis suggesting mosquito larvae are competent generalist feeders capable of survival on diet with varying characteristics. It was concluded that nitrogen availability in the larval diet controlled teneral mosquito size and that teneral CN ratio is a sex- and species-specific fixed parameter. This finding has significant implications for overall mosquito competitiveness and environmental management.  相似文献   

16.
Coastal realignment is now widely instituted in the UK as part of local flood risk management plans to compensate for the loss of European protected habitat and to mitigate the effects of sea‐level rise and coastal squeeze. Coastal aquatic habitats have long been known to provide suitable habitats for brackish‐water mosquitoes and historically, coastal marshes were considered to support anopheline mosquito populations that were responsible for local malaria transmission. This study surveyed the eight largest managed realignment (MRA) sites in England (Essex and the Humber) for mosquito habitats. The apparent absence of anopheline mosquitoes exploiting aquatic habitats at all of these sites suggests that the risk of malaria associated with MRA sites is currently negligible. However, three of the eight sites supported populations of two nuisance and potential arboviral vector species, Aedes detritus and Aedes caspius. The aquatic habitats that supported mosquitoes resulted from a) specific design aspects of the new sea wall (ballast to mitigate wave action and constructed saline borrow ditches) that could be designed out or managed or b) isolated pools created through silt accretion or expansion of flooded zones to neighbouring pasture. The public health risks and recommendations for management are discussed in this report. This report highlights the need for pro‐active public health impact assessments prior to MRA development in consultation with the Health Protection Agency, as well as the need for a case‐by‐case approach to design and management to mitigate mosquito or mosquito‐borne disease issues now and in the future.  相似文献   

17.
The impact of emergent macrophyte species and crepuscular sprinkler disturbance on mosquito abundance over a 2‐year period was measured in wetland mesocosms. Mosquito oviposition and abundance of immature mosquitoes and aquatic invertebrates were monitored in monotypic plots of small‐stature (height of mature stands <1.5 m) alkali bulrush (Schoenoplectus maritimus) and large‐stature (height of mature stands > 2 m) California bulrush (Schoenoplectus californicus) without or with daily sprinkler showers to deter mosquito egg laying. Relative to wetlands without operational sprinklers, oviposition by culicine mosquitoes was reduced by > 99% and immature mosquito abundance was reduced by > 90% by crepuscular sprinkler applications. Mosquito abundance or distribution in wetlands did not differ between the two bulrush species subjected to the sprinkler treatment. Alkali bulrush wetlands without daily sprinkler treatments contained more egg rafts but significantly fewer mosquito larvae than did California bulrush wetlands. Predaceous damselfly naiads were 3–5 times more abundant in alkali bulrush than in California bulrush. Stem density, rate of spread, and autumnal mortality of alkali bulrush were higher than for California bulrush. Replacement of large emergent macrophytes by smaller species may enhance the efficacy of integrated mosquito management programs to reduce mosquito‐transmitted disease cycles associated with multipurpose constructed wetlands used worldwide for water reclamation and habitat restoration.  相似文献   

18.
Macrophytes are a structurally and functionally essential element of stream ecosystems and therefore indispensable in assessment, protection and restoration of streams. Modelling based on continuous environmental gradients offers a potential approach to predict natural variability of communities and thereby improve detection of anthropogenic community change. Using data from minimally disturbed streams, we described natural macrophyte assemblages in pool and riffle habitats separately and in combination, and explored their variation across large scale environmental gradients. Specifically, we developed RIVPACS-type models to predict the presence and abundance of macrophyte taxa at stream sites in the absence of human influence and, used data from impacted streams to explore the responses of three biotic indices to anthropogenic stress. The indices used, taxonomic completeness (O/E-taxa), a measure of compositional dissimilarity (BC-index) and an index taking into account the abundance of species (AB-index), are based on predicted and observed macrophyte communities. We found that size of the catchment area, altitude, latitude and percentage of lakes in the catchment were the large scale environmental variables that best predicted the natural variation of assemblages. The RIVPACS approach substantially improved both the precision and accuracy to predict the natural communities and the sensitivity to human disturbance. O/E-taxa performed best in relation to the null model decreasing the variation by 20% in pools, 29% in riffles and 32% in combined data. In general, models based on the riffle assemblages performed better than models based on pool assemblages, but including both habitats and predicting abundances instead of only presence/absence yielded the greatest accuracy and sensitivity. Our results support the use of multivariate modelling techniques in predicting reference condition to assess status of stream macrophyte communities.  相似文献   

19.
Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes’ capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva‐to‐adult emergence rate. This finding was consistent in two types of larval habitats examined—discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology.  相似文献   

20.
Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator–prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2–1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human–natural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号