首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Magnolol, an active component extracted from Magnolia officinalis, has been reported to have protective effect on ischemia and reperfusion (I/R)-induced injury in experimental animals. The aim of the present investigation was to further evaluate the mechanism(s) by which magnolol reduces I/R-induced myocardial injury in rats in vivo. Under anesthesia, left anterior descending (LAD) coronary artery was occluded for 30 min followed by reperfusion for 24 h (for infarct size and cardiac function analysis). In some experiments, reperfusion was limited to 1 h or 6 h for analysis of biochemical and molecular events. Magnolol and DMSO solution (vehicle) were injected intra-peritoneally 1 h prior to I/R insult. The infarct size was measured by TTC technique and heart function was monitored by Millar Catheter. Apoptosis related events such as p-ERK, p-Bad, Bcl-xl and cytochrome c expression were evaluated by Western blot analysis and myocardial caspase-3 activity was also measured. Magnolol (10 mg/kg) reduced infarct size by 50% (P < 0.01 versus vehicle), and also improved I/R-induced myocardial dysfunction. Left ventricular systolic pressure and positive and negative maximal values of the first derivative of left ventricular pressure (dP/dt) were significantly improved in magnolol-treated rats. Magnolol increased the expression of phosphor ERK and Bad which resulted in inhibition of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. Application of PD 98059, a selective MEK1/2 inhibitor, strongly antagonized the effect of magnolol. Taken together, we concluded that magnolol inhibits apoptosis through enhancing the activation of ERK1/2 and modulation of the Bcl-xl proteins which brings about reduction of infarct size and improvement of cardiac function in I/R-induced injury.  相似文献   

2.
Cardioprotection in humans by carotenoids has been inferred from observational and epidemiologic studies, however, direct studies of cardioprotection and myocardial salvage by carotenoids are lacking. In the current study, intravenous (I.V.) pre-treatment with a novel carotenoid derivative (disodium disuccinate astaxanthin; Cardax) was evaluated as a myocardial salvage agent in a Sprague-Dawley rat infarct model. Animals were dosed once per day I.V. by tail vein injection for 4 days at one of 3 doses (25, 50, and 75 mg/kg) prior to the infarct study carried out on day 5. The results were compared with control animals treated with saline vehicle. Thirty (30) minutes of occlusion of the left anterior descending (LAD) coronary artery was followed by 2 hours of reperfusion prior to sacrifice, a regimen which resulted in a mean infarct size (IS) as a percent (%) of the area at risk (AAR) of 59 +/- 3%. Area at risk was quantified by Patent blue dye injection, and infarct size (IS) was determined by triphenyltetrazolium chloride (TTC) staining. Cardax at 50 and 75 mg/kg for 4 days resulted in a significant mean reduction in IS/AAR to 35 +/- 3% (41% salvage) and 26 +/- 2% (56% salvage), respectively. Infarct size and myocardial salvage were significantly, and linearly, correlated with plasma levels of non-esterified, free astaxanthin at the end of reperfusion. These results suggest that parenteral Cardax may find utility in those clinical applications where pre-treatment of patients at risk for myocardial infarction is performed.  相似文献   

3.

Background

Myocardial contrast echocardiography has been used for determination of infarct size (IS) in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE).

Methods

Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin) was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC) staining.

Results

IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004), with good correlation between measurements (r = 0.91; p < 0.01). The necrotic area determined by TTC was 2.29 ± 1.36 cm2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p < 0.001) then before it (r = 0.92; p = 0.0013).

Conclusion

RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.  相似文献   

4.
5.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

6.
Staining with triphenyltetrazolium chloride (TTC), although controversial, has frequently been used for the delineation of myocardial infarction. This study was performed further to explore the reliability of the TTC method. In 24-h experiments pigs were subjected to closed-chest occlusion of the left anterior descending coronary artery for 30, 60 or 90 min followed by reperfusion with or without superoxide dismutase (SOD) as an adjunct. One TTC-stained slice from each heart was stabilized by microwave irradiation, gelatin-embedded, frozen in hexane chilled with dry ice and cryosectioned. Serial sections were stained with antibodies against fibronectin in order to identify irreversibly injured myocytes and with van Gieson histologically to confirm the necrotic tissue. A close correspondence of the infarct size was found between TTC stained slices and anti-fibronectin stained sections. The infarct size in the van Gieson stained sections also showed good correspondence but the area of infarction tended to be larger. In the experimental group subjected to 30 min ischaemia and with SOD as an adjunct, the estimated infarcted area in the TTC stained slices was significantly smaller than the area estimated from the anti-fibronectin stained sections. In sections viewed in the light microscope an inverse pattern of TTC and anti-fibronectin staining was observed. It was confirmed at the light microscopic level that myocytes containing an abundance of TTC deposits lacked fibronectin whereas myocytes stained with antifibronectin in general lacked TTC staining except for a zone approximately 0.5 mm wide which was located at the intersection between damaged and surviving myocytes where small TTC deposits were present. The width of the stained zone did not differ among the experimental groups. Thus, differences in estimated infarct size by the three methods used reflect problems in correctly delineating the border between living and dead myocardium rather than an interference by SOD on TTC staining.  相似文献   

7.
This study was conducted to determine if elevated blood alcohol prior to acute coronary artery occlusion affects myocardial infarct size in an in vivo canine model. Seven pentobarbital anesthetized open-chest dogs received 10 min Iv infusion of ethanol (0.08 g/kg/min). Ten min after ethanol, the left anterior descending coronary artery (LAD) was occluded distal to its first major branch for 60 min. The LAD was then reperfused for 5 h. Following electrically induced ventricular fibrillation, the area at risk of infarction was delineated with dye. The area of infarction was identified by staining with triphenyl tetrazolium chloride. Eleven untreated control experiments were also conducted. Mean blood ethanol concentration was 155 ± 26 mg/dl just prior to LAD occlusion and 47 ± 3 mg/dl after 4 h reperfusion. Ethanol infusion had no effect on systemic hemodynamic variables during ischemia. In ethanol treated animals, the area at risk was 19.7 ± 3.0% of the left ventricle, and the infarct size was 20.9 ± 4.8% of the area at risk. In control experiments, the area at risk was 23.0 ± 4.1% of the left ventricle (p > 0.05), and the infarct size was 21.6 ± 3.8% of the area at risk (p > 0.05). Collateral blood flow to ischemic region did not differ between the two groups, and the relationships between infarct size and collateral flow were similar for control and untreated hearts. Acute ethanol exposure prior to coronary artery occlusion and subsequent reperfusion does not affect myocardial infarct size in the heart of the anesthetized dog.  相似文献   

8.
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart.  相似文献   

9.
Apelin is a newly discovered peptide that has been recently shown to have cardioprotective effects in the animal model of myocardial infarction (MI) and ischemia/reperfusion (I/R) injuries. The aim of the present study was to investigate the long term cardioprotective effect of [Pyr1]-apelin-13 in the rat model of MI. Male Wistar rats (n = 22) were randomly divided into three groups: (1) sham operated group (2) control MI group and (3) MI treated with apelin (MI-AP group). MI animals were subjected to 30 min of left anterior descending coronary artery (LAD) ligation and 14 days of reperfusion. 24 h after LAD ligation, apelin (10 nmol/kg/day) was administered i.p. for 5 days. Blood sampling was performed at days 1, 3, 5 and 7 after MI for determination of serum changes of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), malondialdehyde (MDA) and nitric oxide (NO). Myocardial infarct size (IS) and hemodynamic function were also measured at the end of the study at day 14. We found out that post infarct treatment with apelin decreases infarct size, serum levels of LDH, CK-MB and MDA and increases heart rate and serum level of NO in the consecutive days, but there were no significant differences in blood pressure in the MI-AP group in comparison with MI. In conclusion, apelin has long term cardioprotective effects against myocardial infarction through attenuation of cardiac tissue injury and lipid peroxidation and enhancement of NO production.  相似文献   

10.
Previous studies indicate that deficiency of endothelial nitric oxide (NO) synthase (eNOS)-derived NO exacerbates myocardial reperfusion injury. We hypothesized that overexpression of eNOS would reduce the extent of myocardial ischemia-reperfusion (MI/R) injury. We investigated two distinct strains of transgenic (TG) mice overexpressing the eNOS gene (eNOS TG). Bovine eNOS was overexpressed in one strain (eNOS TG-Kobe), whereas the human eNOS gene was overexpressed in the other strain (eNOS TG-RT). Non-TG (NTG) and eNOS TG mice were subjected to 30 min of coronary artery occlusion followed by 24 h of reperfusion, and the extent of myocardial infarction was determined. Myocardial infarct size was reduced by 33% in the eNOS TG-Kobe strain (P < 0.05 vs. NTG) and by 32% in the eNOS TG-RT strain (P < 0.05 vs. NTG). However, postischemic cardiac function (cardiac output, fractional shortening) was not improved in the eNOS TG-Kobe mouse at 24 h of reperfusion [P = not significant (NS) vs. NTG]. In additional studies, eNOS TG-Kobe mice were subjected to 30 min of myocardial infarction and 7 days of reperfusion. Fractional shortening and the first derivative of left ventricular pressure were measured in eNOS TG-Kobe and NTG mice, and no significant differences in contractility were observed (P = NS) between the eNOS TG mice and NTG controls. Left ventricular end-diastolic pressure was significantly (P < 0.05 vs. NTG) reduced in the eNOS TG-Kobe strain at 7 days of reperfusion. The cardioprotective effects of eNOS overexpression on myocardial infarct size were ablated by Nomega-nitro-l-arginine methyl ester (300 mg/kg) pretreatment. Thus genetic overexpression of eNOS in mice attenuates myocardial infarction after MI/R but fails to significantly protect against postischemic myocardial contractile dysfunction in mice.  相似文献   

11.
Intermittent hypoxic training protects canine myocardium from infarction   总被引:6,自引:0,他引:6  
This investigation examined cardiac protective effects of normobaric intermittent hypoxia training. Six dogs underwent intermittent hypoxic training for 20 consecutive days in a normobaric chamber ventilated intermittently with N2 to reduce fraction of inspired oxygen (FiO2) to 9.5%-10%. Hypoxic periods, initially 5 mins and increasing to 10 mins, were followed by 4-min normoxic periods. This hypoxia-normoxia protocol was repeated, initially 5 times and increasing to 8 times. The dogs showed no discomfort during intermittent hypoxic training. After 20 days of hypoxic training, the resistance of ventricular myocardium to infarction was assessed in an acute experiment. The left anterior descending (LAD) coronary artery was occluded for 60 mins and then reperfused for 5 hrs. At 30 mins of LAD occlusion, radioactive microspheres were injected through a left atrial catheter to assess coronary collateral blood flow into the ischemic region. After 5 hrs reperfusion, the heart was dyed to delineate the area at risk (AAR) of infarction and stained with triphenyl tetrazolium chloride to identify infarcted myocardium. During LAD occlusion and reperfusion, systemic hemodynamics and global left ventricular function were stable. Infarction was not detected in 4 hearts and was 1.6% of AAR in the other 2 hearts. In contrast, 6 dogs sham-trained in a chamber ventilated with compressed air and 5 untrained dogs subjected to the same LAD occlusion/reperfusion protocol had infarcts of 36.8% +/- 5.8% and 35.2% +/- 9.5% of the AAR, respectively. The reduction in infarct size of four of the six hypoxia-trained dogs could not be explained by enhanced collateral blood flow to the AAR. Hypoxia-trained dogs had no ventricular tachycardia or ventricular fibrillation. Three sham-trained dogs had ventricular tachycardia and two had ventricular fibrillation. Three untrained dogs had ventricular fibrillation. In conclusion, intermittent hypoxic training protects canine myocardium from infarction and life-threatening arrhythmias during coronary artery occlusion and reperfusion. The mechanism responsible for this potent cardioprotection merits further study.  相似文献   

12.
Myocardial ischemia has been associated with left ventricular (LV) postsystolic shortening. The combination of tissue Doppler imaging and high frame-rate acquisition of two-dimensional color flow makes it possible to study the interaction between LV wall motion and intraventricular flow propagation. The aim of this study was to examine in a clinical model the impact that acute myocardial ischemia and prior myocardial infarct might have on LV flow patterns and to explain the underlying mechanisms from the tissue Doppler data. LV flow propagation and tissue velocities during early diastole were studied in 18 healthy individuals, 17 patients with prior anterior myocardial infarct, and 16 patients before and during percutaneous coronary intervention (PCI) of the left anterior descending artery. Normal individuals had intraventricular flow propagation toward the apex during isovolumic relaxation. During this early diastolic time phase, myocardial velocities measured at mid- and apical septal segment were directed away from the apex. Before PCI, patients without myocardial infarction had similar findings as in normal individuals. In contrast, each patient with either prior myocardial infarction or PCI-induced acute ischemia had flow propagation opposite to normal individuals, and tissue velocities reversed toward the apex during early diastole. Reversal of early diastolic LV flow propagation in acute and chronic anterior myocardial ischemia reflects postsystolic shortening in the dyskinetic apical and septal myocardial segments.  相似文献   

13.
High-resolution (11.7 T) cardiac magnetic resonance imaging (MRI) and histological approaches have been employed in tandem to characterize the secondary damage suffered by the murine myocardium following the initial insult caused by ischemia-reperfusion (I/R). I/R-induced changes in the myocardium were examined in five separate groups at the following time points after I/R: 1 h, day 1, day 3, day 7, and day 14. The infarct volume increased from 1 h to day 1 post-I/R. Over time, the loss of myocardial function was observed to be associated with increased infarct volume and worsened regional wall motion. In the infarct region, I/R caused a decrease in end-systolic thickness coupled with small changes in end-diastolic thickness, leading to massive wall thickening abnormalities. In addition, compromised wall thickening was also observed in left ventricular regions adjacent to the infarct region. A tight correlation (r2 = 0.85) between measured MRI and triphenyltetrazolium chloride (TTC) infarct volumes was noted. Our observation that until day 3 post-I/R the infarct size as measured by TTC staining and MRI was much larger than that of the myocyte-silent regions in trichrome- or hematoxylin-eosin-stained sections is consistent with the literature and leads to the conclusion that at such an early phase, the infarct site contains structurally intact myocytes that are functionally compromised. Over time, such affected myocytes were noted to structurally disappear, resulting in consistent infarct sizes obtained from MRI and TTC as well as trichrome and hematoxylin-eosin analyses on day 7 following I/R. Myocardial remodeling following I/R includes secondary myocyte death followed by the loss of cardiac function over time.  相似文献   

14.
AIMS: To investigate whether BM-573 (N-tert-butyl-N'-[2-(4'-methylphenylamino)-5-nitro-benzenesulfonyl]urea), an original combined thromboxane A2 synthase inhibitor and receptor antagonist, prevents reperfusion injury in acutely ischemic pigs. METHODS: Twelve animals were randomly divided in two groups: a control group (n = 6) intravenously infused with vehicle, and a BM-573-treated group (n = 6) infused with BM-573 (10 mg kg(-1) h(-1)). In both groups, the left anterior descending (LAD) coronary artery was occluded for 60 min and reperfused for 240 min. Either vehicle or BM-573 was infused 30 min before LAD occlusion and throughout the experiment. Platelet aggregation induced by arachidonic acid ex vivo measured was prevented by BM-573. RESULTS: In both groups, LAD occlusion decreased cardiac output, ejection fraction, slope of stroke work--end-diastolic volume relationship, and induced end-systolic pressure-volume relationship (ESPVR) rightward shift, while left ventricular afterload increased. Ventriculo-arterial coupling and mechanical efficiency decreased. In both groups, reperfusion further decreased cardiac output and ejection fraction, while ESPVR displayed a further rightward shift. Ventriculo-arterial coupling and mechanical efficiency remained impaired. Area at risk, evidenced with Evans blue, was 33.2+/-3.4% of the LV mass (LVM) in both groups, and mean infarct size, revealed by triphenyltetrazolium chloride (TTC), was 27.3+/-2.6% of the LVM in the BM-573-treated group (NS). Histological examination and immunohistochemical identification of desmin revealed necrosis in the anteroseptal region similar in both groups, while myocardial ATP dosages and electron microscopy also showed that BM-573 had no cardioprotective effect. CONCLUSIONS: These data suggest that BM-573 failed to prevent reperfusion injury in acutely ischemic pigs.  相似文献   

15.
目的大鼠自主呼吸情况下,快捷、简便地建立大鼠急性心肌梗死模型。方法 180~220gSD大鼠60只,于胸骨左缘第4-5肋间隙切开皮层作荷包缝合,逐层钝性分离肌肉,挤出心脏,快速结扎左冠状动脉前降支(LAD)后,送回心脏同时挤压胸廓,拉紧荷包以建立心肌梗死模型。记录结扎前、结扎后3h心电图;结扎3h后取出心脏,冰冻切片TTC染色。结果 50只大鼠成功建立心肌梗死模型,模型成功率为83.33%。心电图显示结扎冠脉后出现R波峰降低,ST段拱背抬高及ST-T融合,TTC染色后左心室出现明显灰白色梗死区。结论本方法可在大鼠自主呼吸情况下,较短的时间内以简便的手术、较小的创伤建立大鼠急性心肌梗死模型。  相似文献   

16.
Extracellular matrix proteins not only provide structural support, but also modulate cellular behavior by activating signaling pathways. Healing of myocardial infarcts is associated with dynamic changes in the composition of the extracellular matrix; these changes may play an important role in regulating cellular phenotype and gene expression. We examined the time course of extracellular matrix deposition in a canine and mouse model of reperfused infarction. In both models, myocardial infarction resulted in fragmentation and destruction of the cardiac extracellular matrix, extravasation of plasma proteins, such as fibrinogen and fibronectin, and formation of a fibrin-based provisional matrix providing the scaffold for the infiltration of granulation tissue cells. Lysis of the plasma-derived provisional matrix was followed by the formation of a cell-derived network of provisional matrix composed of cellular fibronectin, laminin, and hyaluronic acid and containing matricellular proteins, such as osteopontin and osteonectin/SPARC. Finally, collagen was deposited in the infarct, and the wound matured into a collagen-based scar with low cellular content. Although the canine and mouse infarcts exhibited a similar pattern of extracellular matrix deposition, deposition of the provisional matrix was more transient in the mouse infarct and was followed by earlier formation of a mature collagen-based scar after 7-14 days of reperfusion; at the same timepoint, the canine infarct was highly cellular and evolving. In addition, mature mouse infarcts showed limited collagen deposition and significant tissue loss leading to the formation of a thin scar. In contrast, dogs exhibited extensive collagen accumulation in the infarcted area. These species-specific differences in infarct wound healing should be taken into account when interpreting experimental infarction studies and when attempting to extrapolate the findings to the human pathological process.  相似文献   

17.
It has been shown that after ischemia-reperfusion, application of hyperbaric oxygen (HBO) reduces cardiac injury. In this study we tested the hypothesis that HBO preconditioning reduces injury to the ischemic myocardium. One hundred and eight adult male Sprague-Dawley rats (250-280 g) were randomly divided into four groups: normoxia + sham surgery (CS), normoxia + permanent occlusion of the left anterior descending (LAD) coronary artery (CMI), HBO preconditioning + sham surgery (HS), and HBO preconditioning + permanent LAD occlusion (HMI). Rats receiving HBO preconditioning were intermittently exposed to 100% O(2) at 2.5 atmosphere absolute (ATA) for 60 min, twice daily for 2 days followed by 12 hrs of recovery in room air prior to the myocardial ischemic insult induced by LAD ligation. Rats in the normoxia group were time-matched with the HBO group and maintained under normoxic conditions prior to LAD occlusion. At 3 and 7 days after LAD occlusion, heart function parameters were measured by inserting a catheter into the left ventricle, infarct size was calculated using the method of TTC staining, myocardial capillary density was determined by immunohistochemical staining with a monoclonal anti-CD(31)/PECAM-1 antibody, and VEGF protein level was determined by Western blot analysis. At 3 days after LAD ligation, the infarct size of the HMI group was significantly smaller than that of the CMI group (26 +/- 2.5% vs. 38 +/- 3%, P < 0.05). The heart function parameters including left ventricular systolic pressure (LVSP), +dP/dt(max) and -dP/dt(max) were significantly improved in the HMI group compared to the CMI group at 3 and 7 days after LAD occlusion. Capillary density and VEGF protein levels were significantly increased in the ischemic myocardium pre-exposed to HBO. We conclude that HBO preconditioning alleviates myocardial ischemia in rat model.  相似文献   

18.
目的建立兔在体心脏缺血再灌注模型的新方法。方法40只新西兰大白兔随机分为缺血再灌注组(25只),假手术组(15只)。缺血再灌注组采用"二线二结"法结扎心脏左前降支30 min,然后恢复心肌灌注3h;假手术组仅将线从左前降支周围心肌中穿过,但并不结扎。实验中连续描记心电图。两组分别于结扎(穿线)前和再灌注(穿线)后1 h从股静脉取血1 mL测定血清肌钙蛋白。实验结束时取心肌行2,3,5-氯化三苯基四氮唑和苏木精-伊红染色。结果缺血再灌注组心电图存在ST-T的动态演变,再灌注1 h后血清肌钙蛋白浓度明显高于术前(0.47±0.35 vs.0.33±0.31,P=0.002)。两种染色方法均证明存在心肌坏死。结论"二线二结"法能够既方便又成功地建立兔在体心脏缺血再灌注模型。  相似文献   

19.
Elevated serine elastase activity after myocardial infarction can contribute to remodeling associated with left ventricular dilatation and dysfunction. We therefore assessed the effects of overexpressing the selective serine elastase inhibitor elafin in transgenic mice in which a myocardial infarction was caused by ligation of the left anterior descending coronary artery (LAD). Elevated serine elastase activity was observed in nontransgenic littermates as early as 6 h after LAD ligation and persisted at 4 and 7 days but not in sham-operated or elafin-overexpressing transgenic mice. Myeloperoxidase activity (index of inflammatory cells) and matrix metalloproteinase 2 were also increased but only at 4 and 7 days and only in nontransgenic mice (P < 0.05 for both comparisons), and this increase correlated with inflammatory cell infiltration. Echocardiographic study at 4 days revealed indexes of diastolic dysfunction in nontransgenic versus elafin-overexpressing mice (P < 0.05). Morphometric and biochemical analyses at 28 days indicated impairment in cardiac performance, with greater scar thinning and infarct expansion in nontransgenic versus elafin transgenic littermates (P < 0.05 for all comparisons). Thus serine elastase inhibition appears to suppress inflammation, cardiac dilatation, and dysfunction after myocardial infarct.  相似文献   

20.
Myocardial infarction requires urgent reperfusion to salvage viable heart tissue. However, reperfusion increases infarct size further by promoting mitochondrial damage in cardiomyocytes. Exosomes from a wide range of different cell sources have been shown to activate cardioprotective pathways in cardiomyocytes, thereby reducing infarct size. Yet, it is currently challenging to obtain highly pure exosomes in quantities enough for clinical studies. To overcome this problem, we used exosomes isolated from CTX0E03 neuronal stem cells, which are genetically stable, conditionally inducible and can be produced on an industrial scale. However, it is unknown whether exosomes from neuronal stem cells may reduce cardiac ischaemia/reperfusion injury. In this study, we demonstrate that exosomes from differentiating CTX0E03 cells can reduce infarct size in mice. In an in vitro assay, these exosomes delayed cardiomyocyte mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death after reperfusion. The mechanism of MPTP inhibition was via gp130 signalling and the downstream JAK/STAT pathway. Our results support previous findings that exosomes from non-cardiomyocyte-related cells produce exosomes capable of protecting cardiomyocytes from myocardial infarction. We anticipate our findings may encourage scientists to use exosomes obtained from reproducible clinical-grade stocks of cells for their ischaemia/reperfusion studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号