首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present investigation the results of two insemination trials with deep frozen boar spermatozoa are presented. The aim of the trials was to study the effect of different thawing diluents and to compare the fertility of deep frozen spermatozoa from four boars. The trials utilized a total of 139 gilts. The thawing diluents used were boar seminal plasma, protein free seminal plasma, the thawing diluent OLEP and isotonic glucose solution. The composition of OLEP was based on physical and biochemical analyses of boar seminal plasma. The electrolyte levels, pH and osmotic pressure of OLEP are similar to those of boar seminal plasma. From the results it is evident that thawing in boar seminal plasma, protein free seminal plasma and OLEP yielded equal results. Thawing in isotonic glucose solution yielded significantly poorer results concerning percentage of fertilized ova 24–48 hrs. after insemination and almost significantly poorer fertility results four weeks after insemination. The possible effects of the thawing diluents are discussed. With the freezing procedure applied, electrolyte levels, pH and osmotic pressure seem to be factors of importance for the survival of the frozen and thawed spermatozoa and for the maintenance of their fertilizing capacity. Almost significant differences were found in fertility of spermatozoa from different boars. These differences were reflected in pregnancy rates as well as ratio of foetuses to c. 1. in pregnant gilts. The differences were found to be independent of thawing diluent. The variation seems to be caused by differences in resistance of the spermatozoa to the freezing and thawing procedure. The need for laboratory methods for selection of boars with spermatozoa of good freezability is stressed.  相似文献   

2.
The aim of this investigation was to evaluate the possibility of selecting boars for deep freezing by means of laboratory tests on frozen-thawed spermatozoa. Thirty-one randomly selected frozen ejaculates from four boars were investigated by a thermoresistance test after thawing in boar seminal plasma and in OLEP. Extracellular ASAT activity was measured in samples from 30 of the ejaculates after thawing in OLEP and in isotonic glucose solution. Twenty of the ejaculates were utilized for fertility tests by artificial insemination of 37 gilts preceding the laboratory investigation. Three of the boars proved fertile with frozen semen. One of these boars seemed to yield superior fertility to the other two boars. No fertility was obtained with frozen spermatozoa from the fourth boar. Prior to the freezing trial this boar had been used for fresh semen inseminations giving higher pregnancy rates than the average of Swedish A.I.-boars. This boar was therefore considered a case of “low freezability”. In the laboratory tests the samples from this boar showed the lowest motility after 3 hrs.’ storage at 37°C, the highest relative decrease of motility during the thermoresistance test, the highest release of ASAT after thawing in OLEP and the highest relative release of ASAT. Analyses of variance indicated significant and almost significant variation among boars in relative decrease of motility during the thermoresistance test and in relative release of ASAT. The results indicate that the boars were the main cause of variation in fertility as well as in outcome of the laboratory tests. These results do not permit a complete evaluation of the relationship between fertility and outcome of the applied laboratory tests. However, the results indicate a possibility of detecting boars producing spermatozoa with low freezability by means of laboratory tests.  相似文献   

3.
The present investigation was performed to study the effect of freezing and thawing on boar spermatozoa. Thirty-one ejaculates from four boars were investigated after thawing in three different thawing diluents (seminal plasma, OLEP, isotonic glucose solution). From each ejaculate one sample of 1 × 109 spermatozoa was thawed in each of the thawing diluents. Each sample was examined in a thermoresistance test in which motility was stimulated with caffeine 30 min. and 3 hrs. after thawing. Furthermore, acrosome morphology and ASAT release from the spermatozoa were investigated for each sample. One ejaculate from the two most frequently used boars was examined by electron microscopy after thawing in each of the thawing diluents. Differences in the aspects studied appeared between isotonic glucose solution and the other two thawing diluents in the thermoresistance test, in the response to caffeine stimulation 3 hrs. after thawing and in the amount of ASAT released from the spermatozoa. The influence on the acrosome morphology varied between the thawing diluents, but the acrosomal alterations did not seem to be connected with the damage reflected by the thermoresistance test and by the measurement of extracellular ASAT activity. The ultrastructural investigation showed that all spermatozoa examined had some degree of ultrastructural alteration as compared with freshly ejaculated boar spermatozoa treated in the same way. This alteration could not be related to any of the thawing diluents. Of the various laboratory tests the thermoresistance test and the measurement of ASAT release are suggested to be sensitive indicators of sperm damage during freezing and thawing. These tests might be useful indicators of variations in sensitivity of spermatozoa to the freezing-thawing procedure.  相似文献   

4.
In normal production practices, sows and gilts are inseminated at least twice during estrus because the timing of ovulation is variable relative to the onset of estrus. The objective of this study was to determine if a normal fertilization rate could be achieved with a single insemination of low sperm number given at a precise interval relative to ovulation. Gilts (n=59) were randomly assigned to one of three treatment groups: low dose (LD; one insemination, 0.5 x 10(9) spermatozoa), high dose (HD; one insemination, 3 x 10(9) spermatozoa) or multiple dose (MD; two inseminations, 3 x 10(9) spermatozoa per insemination). Twice daily estrus detection (06:00 and 18:00 h) was performed using fenceline boar contact and backpressure testing. Transrectal ultrasonography was performed every 6 h beginning at the detection of the onset of standing estrus and continuing until ovulation. Gilts in the LD and HD groups were inseminated 22 h after detection of estrus; MD gilts received inseminations at 10 and 22 h after detection of estrus. Inseminations were administered by using an insemination catheter and semen was deposited into the cervix. The uterus was flushed on Day 5 after the onset of estrus and the number of corpora lutea, oocytes, and embryos were counted. Time of insemination relative to ovulation was designated as 40 to >24 h, 24 to >12 h, and 12 to 0 h before ovulation and >0 h after ovulation. The LD gilts had fewer embryos (P<0.04), more unfertilized oocytes (P<0.05) and a lower fertilization rate (P<0.07) compared to MD gilts. The effects of time of insemination relative to ovulation and the treatment by time interaction were not significant. We conclude that a cervical insemination with low spermatozoa concentration may not result in acceptable fertility even when precisely timed relative to ovulation.  相似文献   

5.
Precise data on fertility results following peri- and postovulatory insemination in spontaneously ovulating gilts is lacking. Using transcutaneous sonography every 4 h during estrus as a tool for diagnosis of ovulation, the effects of different time intervals of insemination relative to ovulation were investigated with liquid semen (Experiment 1, n=76 gilts) and frozen semen (Experiment 2, n=80 gilts). In Experiment 3 (n=24 gilts) the number of Day-28 embryos related to the various intervals between insemination and ovulation was determined after the use of liquid semen. Using liquid semen the fertilization rates based on Day-2 to Day-5 embryos and the number of accessory spermatozoa decreased significantly in gilts inseminated with 2 x 10(9) spermatozoa per dosage in intervals of more than 12 h before or more than 4 h after ovulation. In the time interval 4 to 0 h before ovulation, comparable fertilization rates were obtained using frozen semen (88.1%) and liquid semen (92.5%). Fertilization rates and numbers of accessory spermatozoa decreased significantly when gilts were inseminated with frozen semen more than 4 h before or 0 to 4 h after the detection of ovulation. The percentage of Day-28 embryos was significantly higher following preovulatory insemination compared to inseminations 0 to 4 h and 4 to 8 h after ovulation. It is concluded that the optimal time of insemination using liquid semen is 12 to 0 h before ovulation, and 4 to 0 h before ovulation using frozen semen. The results stress the importance of further research on sperm transport and ovulation stimulating mechanisms, as well as studies on the time of ovulation relative to estrus-weaning intervals and estrus duration.  相似文献   

6.
The objectives of this study were to determine the optimal time of insemination in the pre-ovulatory period (from 32 to 0 h before ovulation) and to evaluate once-daily versus twice-daily inseminations in gilts. In Experiment 1, pre-puberal gilts (n=102) were observed for estrus every 8h and ultrasonography was performed every 8h from the onset of estrus to confirmation of ovulation. The gilts were inseminated once with 4 x 10(9) spermatozoa at various intervals prior to ovulation. Pregnancy detection was conducted 24 days after AI and gilts were slaughtered 4-6 days later. Corpora lutea and the number of viable embryos were counted and the embryo recovery rate was calculated (based on the percentage of corpora lutea). Inseminations performed <24h before ovulation resulted in a higher embryo recovery rate (P=0.02) and produced 2.1 more embryos (P=0.01) than inseminations >or=24h before ovulation. However, the pregnancy rate was reduced when inseminations were performed >16 h before ovulation (P=0.08). In Experiment 2, pre-puberal gilts (n=105) were observed for estrus every 12h and ultrasonography was performed every 12h from the onset of estrus to confirmation of ovulation. Gilts were inseminated (with 4 x 10(9) spermatozoa) 12h after the onset of estrus, with inseminations repeated either every 12h (twice-daily) or 24h (once-daily) during estrus. The gilts were allowed to farrow. There were no differences (between gilts bred twice-daily versus once-daily) for return to estrus rate (P=0.36) and adjusted farrowing rate (P=0.19). However, gilts inseminated once-daily had 1.2 piglets less than those inseminated twice-daily (P=0.09). In conclusion, gilts should be inseminated up to 16 h before ovulation, as intervals >16 h reduced pregnancy rate and litter size.  相似文献   

7.
The effects of aging golden hamster spermatozoa in the female reproductive tract on the percentage of ova fertilized, the stage of development, and the chromosome complement of the resulting zygotes were studied. Females were inseminated artificially with cauda epididymal sperm at 6 h (control), 10, 15,18, or 21 h before the estimated time of ovulation. A decrease in the percentage of ova fertilized was found as the time spermatozoa were aged in utero prior to ovulation increased. The zygotes collected at 56 h postovulation from females inseminated 15 or 18 h prior to ovulation were delayed in development, as judged by the number of blastomeres. Although an increase of chromosomally abnormal zygotes was not found, a possibility exists that mosaicism may have been present, as evidenced by zygotes with unequal sized blastomeres, and went undetected.  相似文献   

8.
Differences in sperm fertilizing capacity of males often remain undetected by routine semen parameters. Heterospermic insemination with equal numbers of spermatozoa from 2 males is an accurate method for assessing differences in fertility. Use of heterospermic insemination depends on a reliable, efficient assay to identify paternity of conceptuses or offspring. In this study, polymorphic DNA markers amplified by PCR were tested to determine paternity of Day 5 to 6 embryos. The fertilizing capacity of 2 boars (A and B) with similar semen parameters was compared after homospermic (n=14 gilts) and heterospermic (n=11 gilts) insemination. Single AI's were performed under suboptimal conditions using 1 x 10(9) spermatozoa at 12 to 24 h before ovulation to prompt differences in fertilization and to stimulate sperm competition. The fertilization rate and the number of accessory spermatozoa were determined in Day 5 to 6 embryos. Using 5 different polymorphic DNA markers, paternity could be determined in 95.8% of the embryos. Boar B sired significantly (P<0.05) more offspring than Boar A after insemination with pooled semen, and this was reflected by a significantly (P<0.05) higher number of accessory spermatozoa following homospermic insemination with semen from Boar B, although fertilization rates did not differ between the 2 boars after homospermic insemination. The results suggest that the viability of spermatozoa in the female reproductive tract contributes to differences in fertility rates of males with similar in vitro sperm quality parameters. The number of accessory spermatozoa is a more sensitive measure of boar fertility than the fertilization rate. Polymorphic DNA markers are suitable for verification of parentage even at a very early stage of embryonic development.  相似文献   

9.
The fertility results of two experiments are presented. In experiment 1, the semen was frozen in tris-fructose-EDTA or BF3 diluents at 0-25 X 10(9)/ml sperm concentration and extended after thawing with either seminal plasma (SP) or the freezing medium (FM) containing no cryoprotective agent. In the second experiment the semen was glycerolated by two methods, frozen at 1-0 X 10(9)/ml sperm concentration, and extended wtih FM before insemination. Fertility after double insemination within one oestrus with semen frozen in tris-fructose-EDTA or BF3 diluents varied depending on the medium used for extension of thawed semen. The farrowing rates for semen frozen in the former diluent with FM and SP post-thawing media were 4/8 and 1/8 respectively, and for semen frozen BF3 diluent with FM and SP post-thawing extenders 1/8 and 5/8. The mean farrowing for the 32 animals inseminasted was 34-4%. Pregnancies for semen frozen in tris-fructose-EDTA and glycerolated at 30 or 5 degrees C were 5/12 and 4/12 respectively, and for single and double inseminations 6/12 and 3/12 respectively. Of 24 animals inseminated 37-5% farrowed.  相似文献   

10.
In pigs, high variation is seen in the duration of estrus and in the time of ovulation. This is one of a wide range of factors not related to semen quality, which possibly influences the results of field insemination trials. Experiment 1 (n=81 gilts) was performed to determine the influence of the time of ovulation on the fertilizing capacity of liquid boar semen stored up to 118 h. The objective of Experiment 2 (n=102 gilts) was to study the fertilizing potential of semen stored up to 120 h in 2 different extenders, Androhep and Beltsville Thawing Solution (BTS), by means of postovulatory AI. Inseminations were performed 0 to 4 h after ovulation in order to standardize the trial conditions. Fertilization rates based on Day-2 to Day-4 embryos, and the number of accessory spermatozoa per zona pellucida did not differ between semen stored for 0 to 48 and 48 to 87 h in gilts ovulating within 12 after insemination (Experiment 1). Gilts with an interval of 12 to 24 h between AI and ovulation had lower fertility results using semen stored for more than 48 h. A further decrease was observed when semen storage exceeded 87 h in those gilts ovulating later than 24 h after insemination. The time of ovulation has to be considered as being a major factor of variation in the fertility results of AI trials. In Experiment 2, fertilization rates and numbers of accessory spermatozoa decreased between semen stored for 0 to 24 and 24 to 48 h in BTS, and between semen stored for 0 to 24 and 48 to 72 h in Androhep. Significant differences in fertility between diluents were seen only when using semen stored for more than 96 h, with semen extended with Androhep giving the higher results. The results indicate that the decrease in fertilizing capacity due to in vitro aging of spermatozoa cannot be prevented even during the first days of storage.  相似文献   

11.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

12.
Eleven superovulating Friesian lactating cows were inseminated deep into one uterine horn with one unit of frozen semen, containing 2.5 million total spermatozoa, with more than 40% postthaw progressive motility and with 14% morphologically abnormal spermatozoa. Semen was deposited into the right or left uterine horns of alternate cows. There was no difference in the proportions of fertilized recovered ova from ipsilateral horns between right and left inseminations (P>0.05). The fertilization rate in the contralateral horns was higher (P<0.01) for right uterine horn insemination (50%) than for left uterine horn insemination (15.6%).  相似文献   

13.
To determine if the egg provides any clues for the regulation of ovum transport in the hamster, oocyte and embryo transport were compared. On the evening preceding ovulation, the animals were randomly assigned to one of five groups. They were caged overnight with a male of proven fertility (Group 1) or they were isolated (Group 2). Other females were artificially inseminated in both uterine horns at 2200 h either with fertile epididymal spermatozoa (Group 3), spermatozoa rendered infertile by freezing and thawing (Group 4), or with fertile spermatozoa in one uterine horn and infertile spermatozoa in the contralateral horn (Group 5). The number, condition, and distribution of ova in the genital tract were assessed at various intervals during the next 4 days. The rate of fertilization and normal development in females or sides inseminated with fertile or infertile spermatozoa was over 90% and 0% respectively. Embryos in Groups 1 and 3 reached the uterus 1 day earlier than unfertilized oocytes in Groups 2 and 4. In group 5, the transport of embryos resulting from insemination with fertile spermatozoa followed a pattern similar to those in Groups 1 and 3; the oocytes in the contralateral tract resembled those of Groups 2 and 4. The different transport rates of embryos and oocytes were not associated with the reproductive state of the female but with the condition of the ova. Moreover, the different transport rates were observed in animals transporting the two types of eggs simultaneously on different sides indicating that there is a local recognition of some unidentified factor unequally present in fertilized and unfertilized eggs.  相似文献   

14.
Twenty-six female brown marsupial mice in a laboratory colony were mated at intervals ranging from 1 to 20 days between coitus and ovulation. The numbers of corpora lutea and normal embryos were counted. A multiple regression model examined the parabolic relationship between the proportion of normal embryos and the time from coitus to ovulation. The proportion of normal embryos increased until a mean of 9.5 days and decreased thereafter. This relationship was independent of the year of breeding and the number of corpora lutea. After survival of spermatozoa for up to 13 days in the female reproductive tract, the fertility levels of females was 88-92%. Low fertility levels after 13 days appeared to be due to a decrease in the number of spermatozoa. Reproductive tracts from 7 females killed after insemination and examined histologically showed many spermatozoa in the isthmus of the oviduct and the uterus at 5 days post coitum; spermatozoa confined to the isthmus between 6 and 13 days; and few spermatozoa in the isthmus at 14 days after copulation. A comparison between the fertility levels in the females which had been inseminated once and a further 17 females which had been inseminated 2 or 3 times suggested that spermatozoa from 2nd and 3rd inseminations can contribute spermatozoa for fertilization. In these females fertility levels did not decline with time after the first mating.  相似文献   

15.
A competitive insemination study was conducted to determine the effect of a deep uterine insemination on accessory sperm number per embryo in cattle. Cryopreserved semen of a fertile bull characterized by spermatozoa with a semi-flattened region of the anterior sperm head (marked bull) was matched with cryopreserved semen from an unmarked bull having spermatozoa with a conventional head shape. Using 0.25-mL French straws and a side delivery embryo transfer device, deep uterine insemination (0.125 mL deposited in each horn) was performed 2 cm from the uterotubal junction. Immediately after, the uterine body was artificially inseminated using semen (0.25 mL) from an alternate bull and a conventional insemination device. The complete dose (both inseminations) was 50x10(6) total sperm cells consisting of an equal number of spermatozoa from each bull. Single ovulating cows (n = 95) were inseminated at random with either the unmarked semen in the uterine body and marked semen in the uterine horn, or the unmarked semen in the uterine horn and marked semen in the uterine body. Sixty-one embryos(ova) were recovered nonsurgically 6 d post insemination, of which 40 were fertilized and contained accessory spermatozoa. The ratio and total number of accessory spermatozoa recovered was different among treatments: 62:38 (326) for the unmarked semen in the uterine body and marked semen in the uterine horn, and 72:28 (454) for the unmarked semen in the uterine horn and marked semen in the uterine body (P<0.05). Deep uterine insemination using this semen in a split dose and a side delivery device favors accessibility of spermatozoa to the ovum compared with conventional uterine body insemination.  相似文献   

16.
Semen from 3 stallions was extended using 2 methods (Kenney extender and a modified Kenney extender), slowly cooled, and stored for 41 ± 6 (s.d.) h before insemination. An insemination dose (40 ml) contained 1.5-2 billion spermatozoa. In the experiment, 26 mares were inseminated in 30 cycles. The pregnancy rate per cycle obtained with sperm stored in the Kenney extender was 87% (n=15). When the semen was extended with the modified extender, centrifuged and stored, the pregnancy rate was 60% (n=15). Inseminations were done every other day until ovulation was detected. If a mare ovulated more than 24 h after the last insemination, she was inseminated also after ovulation. The single-cycle pregnancy rate was 58% when the mares were inseminated only before ovulation (n=19) but the rate was 100% when the inseminations were done both before and after ovulation (n=9) or only after ovulation (n=2). The difference in pregnancy rates was significant (p<0.05), indicating that postovula-tory inseminations probably serve to ensure the pregnancies. The extending and handling methods used in this study resulted in a combined pregnancy rate of 73%, and appear thus to be useful for storing stallion semen for approximately 2 days.  相似文献   

17.
Dairy bull fertility level has received less attention than production transmitting ability. A simplified fertility test may be beneficial. A study was designed to test the use of tris-(1-aziridinyl)-phosphine oxide (TEPA) treated sperm, which arrests early cell division of the fertilized egg, in heterospermic insemination of superovulated cows. Semen samples were collected and pooled from University of Illinois dairy bulls. Semen samples were washed once, suspended in Illini Variable Temperature diluent (IVT) and incubated with or without TEPA (1.0 to 5.0 mg/ml) for 15 min. Samples were then washed again to remove excess TEPA. Additions of 1.0 to 5.0 mg/ml TEPA to sperm concentrations of 8 x 10(8) sperm/ml had no adverse effect on motility or morphology. The first part of the study utilized superovulated cows inseminated with treated (six cows) or untreated (six cows) sperm in different samples from the same bulls. Secondly, superovulated cows (eight cows) were artificially inseminated with treated and untreated split ejaculates from the same bulls. Lastly, superovulated cows (five cows) were heterospermically inseminated with treated (bull No. 1) and untreated (bull No. 2) spermatozoa. Out of 54 and 39 ova recovered in control and test cows, 40 blastocysts and 31 embryos arrested at the one- to five-cell stage resulted, respectively. Out of a predicted 123 ovulations, 78 fertilized ova were recovered; 40 of these were fertilized by control spermatozoa and 36 by TEPA-treated spermatozoa for parts one and two of the study respectively. These results indicated no significant difference in fertilizability of ova between control and TEPA-treated spermatozoa. Of 41 fertilized ova recovered (part 3), bull No. 1 fertilized significantly more ova (mean +/- standard deviation 5.0 +/- 2.3) than bull No. 2 (2.6 +/- 1.8). Results indicate a difference in fertility between bulls.  相似文献   

18.
Gonadotropin releasing hormone (GnRH) treatment was examined as a means of improving the efficacy of embryo collection in the sheep following intrauterine insemination of frozen-thawed semen. In summary, treatment consistently improved fertilization rates and the number of fertilized ova collected per ewe was enhanced compared with untreated ewes. The yield of fertilized ova in ewes treated with follicle stimulating hormone (FSH) was maximized by administering GnRH 36 h after progestagen treatment; 24 h was the preferred time in ewes treated with pregnant mare serum gonadotropin (PMSG). There was a significant (P < 0.001) increase in the percentage of unfertilized ova in the former treatment when GnRH was given at 24 h. An examination of the time of insemination (0, 6, 12 and 18 h before the median time of ovulation) indicated that fertilization rates were highest when insemination occurred at 6 h in both GnRH-treated ewes and in untreated ewes. In GnRH-treated ewes, the recovery of ova was lowest when insemination occurred at the time of ovulation. The number of motile frozen-thawed spermatozoa required for fertilization following treatment was estimated to be approximately 20 x 10(6) per uterine horn. GnRH-treatment also improved the yield of fertilized ova in sheep that were naturally mated, although this yield was lower than that obtained with intrauterine insemination of frozen-thawed semen. It is concluded that fertilization failure, a major problem in sheep embryo collection, can be eliminated through judicious use of GnRH treatment and properly timed intrauterine insemination.  相似文献   

19.
This study was done to determine the effects of processing techniques on the quality of semen from Dutch AI-bucks with the view on improving pregnancy rates after artificial insemination (AI) with liquid or frozen-thawed semen. Motility of spermatozoa was estimated under a microscope whereas the percentage live spermatozoa and the percentage live spermatozoa with intact acrosomes were determined by means of flow cytometry. Aspects of semen processing that were investigated are storage temperature of liquid semen (i), the effect of glycerol on liquid-stored semen (ii), removal of seminal plasma (iii) and type of extender (iv). The correlation between semen quality and fertility rates in inseminated does was also investigated. The percentage motile spermatozoa in semen stored in liquid form for 72 h progressively declined over time, irrespective of whether storage occurred at 4 or 18 degrees C. The percentage motile spermatozoa in semen stored at 18 degrees C was similar to that in semen stored at 4 degrees C if stored for 24 h but lower if stored for 48 h. Goats differ in the sensitivity of their spermatozoa to the deleterious effects of glycerol. Neither the removal of seminal plasma nor the type of extender had any effect on semen quality before freezing but semen frozen in a Tris-citric acid-glucose (TCG) buffer with egg yolk without removal of the seminal plasma had better quality after thawing than semen frozen in another diluent or after removal of seminal plasma. Remarkably no significant correlation between fertility and membrane integrity of spermatozoa could be found. Thus, although integrity assays for spermatozoa are useful to asses resistance to semen handling, the validity of these assays for predicting fertility is questioned.  相似文献   

20.
A group of female hamsters was mated with males of proven fertility either several hours before or during ovulation. Another group of females was artificially inseminated several hours before ovulation. Females were killed at various times after the onset of mating or artificial insemination, oviducts were fixed and sectioned serially, and spermatozoa were counted individually as to their location in the oviduct. Regardless of the type or time of insemination, the vast majority of spermatozoa that entered the oviduct remained in the lower segments of the isthmus (the intramural and caudal isthmus) without ascending to the ampulla. The lower segments of the oviduct, particularly the caudal isthmus, appeared to be acting as a "sieve" and/or "sperm reservoir." In females mated or artificially inseminated prior to ovulation, virtually no spermatozoa reached the cephalic isthmus or ampulla until the commencement of ovulation. Although a few spermatozoa reached the ampulla by 1 h after the onset of mating, they were the exception rather than the rule. When females were mated during ovulation, spermatozoa spent a minimum of about 3 h in the caudal isthmus before ascending to the ampulla. The number of spermatozoa that entered the oviduct after artificial insemination was considerably lower than in naturally mated animals, but this low number was apparently large enough to ensure complete fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号