首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
In our previous study, lancemaside A isolated from Codonopsis lanceolata (family Campanulaceae) ameliorated colitis in mice. In this study, the anti‐inflammatory effects of lancemaside A was investigated in lipopolysaccharide (LPS)‐stimulated mice and their peritoneal macrophage cells. Lancemaside A suppressed the production of pro‐inflammatory cytokines, TNF‐α and IL‐1β, in vitro and in vivo. Lancemaside A also down‐regulated inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2), as well as the inflammatory mediators, nitric oxide (NO), and PGE2. Lancemaside A also inhibited the expression of IL‐1 receptor‐associated kinase‐4 (IRAK‐4), the phosphorylation of IKK‐β and IκB‐α, the nuclear translocation of NF‐κB and the activation of mitogen‐activated protein kinases in LPS‐stimulated peritoneal macrophages. Furthermore, lancemaisde A inhibited the interaction between LPS and TLR4, as well as IRAK‐4 expression in peritoneal macrophages. Based on these findings, lancemaside A expressed anti‐inflammatory effects by regulating both the binding of LPS to TLR4 on macrophages. J. Cell. Biochem. 111: 865–871, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
ABSTRACT

The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.  相似文献   

5.
    
Caspase-11 is an inducible caspase involved in the regulation of cell death and inflammation. In the present study, we examined whether apoptosis signal-regulating kinase 1 (Ask1)-mediated signaling pathway is involved in the expression of caspase-11 induced by lipopolysaccharide (LPS). We found that the induction of caspase-11 was suppressed by the inhibitors of NADPH oxidase (Nox) or knockdown of Nox4 that acts downstream of toll-like receptor 4 and generates Ask1-activating reactive oxygen species. Overexpression of dominant negative tumor necrosis factor receptor associate factor 6 also suppressed the induction of caspase-11. Importantly, knockdown or dominant negative form of Ask1 suppressed the induction of caspase-11 following LPS stimulation. Taken together, our results show that Ask1 regulates the expression of caspase-11 following LPS stimulation.  相似文献   

6.
    
Lipopolysaccharide (LPS) induces macrophage/monocyte activation and pro-inflammatory cytokines production by activating Toll-like receptor 4 (TLR-4) signaling. Rab GTPase 21 (Rab21) is a member of the Rab GTPase subfamily. In the present study, we show that LPS induced TLR4 and Rab21 association and endosomal translocation in murine bone marrow–derived macrophages (BMDMs) and primary human peripheral blood mononuclear cells (PBMCs). In BMDMs, shRNA-mediated stable knockdown of Rab21 inhibited LPS-induced expression and production of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α). Conversely, forced overexpression of Rab21 by an adenovirus construct potentiated LPS-induced IL-1β, IL-6 and TNF-α production in BMDMs. Further studies show that LPS-induced TLR4 endosomal traffic and downstream c-Jun and NFκB (nuclear factor-kappa B) activation were significantly inhibited by Rab21 shRNA, but intensified with Rab21 overexpression in BMDMs. Finally, in the primary human PBMCs, siRNA-induced knockdown of Rab21 significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production. Taken together, we suggest that Rab21 regulates LPS-induced pro-inflammatory responses by promoting TLR4 endosomal traffic and downstream signaling activation.  相似文献   

7.
The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A−/−) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and interferon (IFN)-β were significantly increased in SR-A−/− mice compared to wild-type mice, and elevated nuclear factor kappa B (NFκB) activation was detected in SR-A−/− macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NFκB in vitro. SR-A deletion also promoted the nuclear translocation of NFκB and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A−/− macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.  相似文献   

8.
Intestinal epithelial cells not only present a physical barrier to bacteria but also participate actively in immune and inflammatory responses. The migration of epithelial cells from the crypt base to the surface is accompanied by a cellular differentiation that leads to important morphological and functional changes. It has been reported that the differentiation of colonic epithelial cells is associated with reduced interleukin (IL)-8 responses to IL-1beta. Although toll-like receptor 4 (TLR4) has been previously identified to be an important component of mucosal immunity to lipopolysaccharide (LPS) in the colon, little is known about the regulation of TLR4 in colonic epithelial cells during cellular differentiation. We investigated the effects of differentiation on LPS-induced IL-8 secretion and on the expression of TLR4. Differentiation was induced in colon cancer cell line HT-29 cells by butyrate treatment or by post-confluence culture and assessed by measuring alkaline phosphatase (AP) activity. IL-8 secretion was measured by ELISA, and TLR4 protein and mRNA expressions were followed by Western blot and RT-PCR, respectively. HT-29 cells were found to be dose-dependently responsive to LPS. AP activity increased in HT-29 cells by differentiation induced by treatment with butyrate or post-confluence culture. We found that IL-8 secretion induced by LPS was strongly attenuated in differentiated cells versus undifferentiated cells, and that cellular differentiation also attenuated TLR4 mRNA and protein expressions. Pretreating HT-29 cells with tumor necrosis factor (TNF)-alpha or interferon (INF)-gamma augmented LPS-induced IL-8 secretion and TLR4 expression. These TNF-alpha- or INF-gamma-induced augmentations of LPS response and TLR4 expression were all down-regulated by differentiation. Collectively, we conclude that cellular differentiation attenuates IL-8 secretion induced by LPS in HT-29 cells, and this attenuation is related with the down-regulation of TLR4 expression.  相似文献   

9.
10.
Dendritic cells (DCs) induce innate immune responses by recognizing bacterial LPS through TLR4 receptor complexes. In this study, we compared gene expression profiles of TLR4 knockout (TLR4neg) DCs and wild type (TLR4pos) DCs after stimulating with LPS. We found that the expression of various inflammatory genes by LPS were TLR4-independent. Among them, interleukin 1 receptor antagonist (IL-1rn) was of particular interest since IL-1rn is a potent natural inhibitor of proinflammatory IL-1. Using RT-PCR, real-time PCR, immunoblotting and ELISA, we demonstrated that IL-1rn was induced by DCs stimulated with LPS in the absence of TLR4. 2-Aminopurine, a pharmacological PKR inhibitor, completely abrogated LPS-induced expression of IL-1rn in TLR4neg DCs, suggesting that LPS-induced TLR4-independent expression of IL-1rn might be mediated by PKR pathways. Considering that IL-1rn is a physiological inhibitor of IL-1, TLR4-independent and PKR-dependent pathways might be crucial in counter-balancing proinflammatory effector functions of DCs resulted from TLR4-dependent activation by LPS.  相似文献   

11.
Several studies demonstrated a sex-specific cytokine secretion by macrophages following trauma-hemorrhage (T-H) and incubation with lipopolysaccharide A (LPS). Although LPS is known to act via the receptors CD14 and TLR4 on macrophages, it remains unknown whether differences in LPS receptor expression in males and females may be responsible for the gender-specific LPS induced cytokine response following (T-H). To study this, male and proestrus female mice (C3H/HeN) were subjected to trauma (laparotomy) followed by hemorrhage or sham operation. At 2 h thereafter, SMphi and PMphi were harvested and cultured for 2 h. The expression of CD14 and TLR4 was measured by flow cytometry on unstimulated SMphi and PMphi as well as after LPS stimulation. The results indicate that the expression of CD14 and TLR4 on SMphi and PMphi from female and male mice was similar in sham-operated animals and after (T-H). Incubation of macrophages with LPS did not alter CD14 and TLR4 expression in the study groups. Thus, the sex specific LPS induced cytokine secretion after (T-H) is not caused by differences in LPS receptor expression on Mphi of male and female mice.  相似文献   

12.
Cyclooxygenase 2 (COX)-2 is induced by bacterial and viral infections and has complex, poorly understood roles in anti-pathogen immunity. Here, we use a knock-in luciferase reporter model to image Cox2 expression across a range of tissues in mice following treatment with the either the prototypical bacterial pathogen-associated molecular pattern (PAMP), LPS, which activates Toll-like receptor (TLR)4, or with poly(I:C), a viral PAMP, which activates TLR3. LPS induced Cox2 expression in all tissues examined. In contrast, poly(I:C) elicited a milder response, limited to a subset of tissues. A panel of cytokines and interferons was measured in plasma of wild-type, Cox1−/− and Cox2−/− mice treated with LPS, poly(I:C), MALP2 (TLR2/6), Pam3CSK4 (TLR2/1), R-848 (TLR7/8) or CpG ODN (TLR9), to establish whether/how each COX isoform modulates specific PAMP/TLR responses. Only LPS induced notable loss of condition in mice (inactivity, hunching, piloerection). However, all TLR agonists produced cytokine responses, many of which were modulated in specific fashions by Cox1 or Cox2 gene deletion. Notably we observed opposing effects of Cox2 gene deletion on the responses to the bacterial PAMP, LPS, and the viral PAMP, poly(I:C), consistent with the differing abilities of the PAMPs to induce Cox2 expression. Cox2 gene deletion limited the plasma IL-1β and interferon-γ responses and hypothermia produced by LPS. In contrast, in response to poly(I:C), Cox2−/− mice exhibited enhanced plasma interferon (IFNα,β,γ,λ) and related cytokine responses (IP-10, IL-12). These observations suggest that a COX-2 selective inhibitor, given early in infection, may enhance and/or prolong endogenous interferon responses, and thereby increase anti-viral immunity.  相似文献   

13.
目的 利用CRISPR/Cas9技术构建Toll样受体4(TLR4)基因敲除小鼠模型,并观察突变小鼠对革兰氏阴性细菌脂多糖(LPS)刺激响应的变化。方法 针对TLR4基因外显子2设计并合成1对sgRNA片段,与编码Cas9的mRNA混合后通过受精卵显微注射方法,建立TLR4基因敲除小鼠,通过繁育获得基因敲除纯合子小鼠(TLR4-/-小鼠);通过LPS刺激,分析TLR4-/-小鼠对炎症应激的反应情况,并在分子和病理水平上和野生型对照(WT)进行比较。结果 PCR及测序检测表明TLR4基因外显子2在小鼠基因中被成功敲除;给予LPS刺激后,IL1βIL6MyD88iNOSTNFa等炎症因子的表达在野生型小鼠的心、肝和肺组织中显著上调,而在TLR4-/-小鼠中则几乎没有变化;血生化指标显示LPS刺激后WT小鼠血清中的尿素(Urea)和肌酐(Cre)水平显著升高,而TLR4-/-小鼠刺激前后无显著变化,病理分析同样发现TLR4-/-小鼠能够抵抗LPS对肾组织的损伤。结论 利用CRISPR/Cas9技术成功构建了TLR4基因剔除小鼠模型,TLR4的缺失能够降低IL1βIL6MyD88iNOSTNFa炎症因子对LPS刺激的响应,抑制LPS引起的炎症反应及对组织的损伤。  相似文献   

14.
    
Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) remain a major cause of morbidity and mortality in critically ill patients, and no specific therapies are still available to control the mortality rate. Thus, we explored the preventive and therapeutic effects of tannic acid (TA), a natural polyphenol in the context of ALI. We used in vivo and in vitro models, respectively, using lipopolysaccharide (LPS) to induce ALI in mice and exposing J774 and BEAS-2B cells to LPS. In both preventive and therapeutic approaches, TA attenuated LPS-induced histopathological alterations, lipid peroxidation, lung permeability, infiltration of inflammatory cells, and the expression of proinflammatory mediators. In addition, in-vitro study showed that TA treatment could reduce the expression of proinflammatory mediators. Further studies revealed that TA-dampened inflammatory responses by downregulating the LPS-induced toll-like receptor 4 (TLR4) expression and inhibiting extracellular-signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, cells treated with the inhibitors of ERK1/2 (PD98059) and p38 (SB203580) mitigated the expression of cytokines induced by LPS, thus suggesting that ERK1/2 and p38 activity are required for the inflammatory response. In conclusion, TA could attenuate LPS-induced inflammation and may be a potential therapeutic agent for ALI-associated inflammation in clinical settings.  相似文献   

15.
MD-2 is an association molecule of Toll-like receptor 4 and is indispensable for the recognition of lipopolysaccharide. Here we report the identification of mRNA for an alternatively spliced form of MD-2, named MD-2B, which lacks the first 54 bases of exon 3. When overexpressed with MD-2, MD-2B competitively suppressed NF-kappaB activity induced by LPS. Regardless of the truncation, however, MD-2B still bound to TLR4 as efficiently as MD-2. Flow cytometric analyses revealed that MD-2B inhibited TLR4 from being expressed on the cell surface. Our data indicate that MD-2B may compete with MD-2 for binding to TLR4 and decrease the number of TLR4/MD-2 complexes on the cell surface, resulting in the inhibition of LPS signaling.  相似文献   

16.
本研究的主要目的是探讨适宜浓度短链脂肪酸(short chain fatty acids,SCFAs)混合物对炎症环境下小胶质细胞的抑炎作用及其机制.采用脂多糖(LPS)刺激小鼠小胶质细胞系BV-2细胞建立神经炎症模型,并利用CCK8试剂盒检测不同浓度单一的乙酸钠、丙酸钠、丁酸钠处理后的细胞活力.设计选取这三种SCFAs对细胞活力无影响、且有抑炎效果的特定浓度进行组合(SCFAs mix),进一步检测SCFAs mix对LPS刺激下BV-2细胞炎症反应的影响及机制,包括:a.用一氧化氮(NO)试剂盒检测NO的释放;b.用ELISA检测炎症因子TNF-α、IL-6的释放;c.用qRT-PCR和Western blot检测炎症因子TNF-α、IL-6、炎症小体NLRP3、炎症通路相关蛋白TLR4、NF-κB等的表达变化.结果表明LPS刺激BV-2细胞4 h后,在体系中添加特定浓度的单一SCFA处理12 h后,不能缓解BV-2细胞的炎症反应,而将上述SCFAs配制成同等终浓度的SCFAs mix处理12 h却能显著降低细胞培养上清液中NO、TNF-α和IL-6 (均P0.001)的量,还能抑制BV-2细胞内iNOS、TNF-α、IL-6和NLRP3 mRNA的升高(均P0.001);通过对炎症信号通路关键分子的检测发现,SCFAs mix可以抑制LPS诱导的BV-2细胞内TLR4、MyD88、TRAF6和NF-κB蛋白的表达升高.综上可见:适宜浓度的混合SCFAs可通过调控TLR4/MyD88/TRAF6/NF-κB炎症通路抑制LPS诱导的小胶质细胞的炎症反应,而起到抗炎的保护作用.  相似文献   

17.
18.
目的:探讨生物活性透明质酸治疗激光所致皮肤创口炎症的临床疗效。方法:选择我院收治的40例激光皮肤除斑患者为研究对象,按就诊顺序将其分为实验组和对照组。实验组20例患者采用生物活性透明质酸涂抹激光治疗后的皮肤伤口,对照组20例患者采用30分冰袋冷敷皮肤激光治疗后的皮肤伤口,观察和比较两组患者伤口第1-7天的的红肿痛的改善情况。结果:(1)疼痛症状的改善情况:实验组第1天的显效率0%,有效20例,总有效率100%;对照组第1天的显效率0%,有效20例,总有效率100%,两组比较无统计学差异(P0.05)。(2)红肿的改善情况:实验组第1天显效20例,总有效率为100%;对照组第1天显效0例,有效20,总有效率为100%,两组总有效率比较无统计学差异(P0.05),但实验组的显效率明高于对照组,差异具有统计学意义(P0.01)。结论:生物活性透明质酸涂抹可以有效控制皮肤伤口炎症引发的红肿痛,且临床效果明显优于冰袋冷敷,方便可行,值得推广。  相似文献   

19.
    
Since the publication of the Janeway''s Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号