首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the ovulation rate and the weaning-to-service interval (WSI) of sows in relation to their body weight loss during lactation in tropical climatic conditions. Effect of lactation length (LL), number of total born piglets, number of live born piglets, litter birth weight, average piglet birth weight, number of pigs weaned, litter weaning weight and average pig weaned weight on sow weight loss during lactation were also studied. This study was conducted in two commercial purebred sow herds (A, B) in the central part of Thailand from August to December 1997. The herds had both Landrace (L) and Yorkshire (Y) sows. The 123 sows (55 L and 68 Y) in herd A and 153 sows (95 L and 58 Y) in herd B, parity 1-4, were weighed within 4 days after farrowing and at weaning. Lactation length, litter size at birth and at weaning, litter weight at birth and at weaning, and WSI were recorded for each of these sows. In herd A, 52 sows (20 L and 32 Y) were examined once by laparoscopy between days 8 and 14 after AI-service. These sows had farrowed at least seven piglets in the previous parturition. The numbers of corpora lutea (CL) in both ovaries were counted, and were assumed to equal the ovulation rate. L-sows had significantly (P < 0.05) higher relative weight loss during lactation (RWL) than Y-sows. The RWL increased by 0.7% for each extra pig weaned. When LL increased by 1 day, within the interval of 17-34 days, RWL decreased by 0.6%. Sows with a high weight loss had significantly (P < 0.05) longer WSI than sows with medium or low weight loss. Weight loss had a significant (P < 0.05) effect on WSI in parity 1 and 2 sows. Y-sows had more CL than L-sows (15.7 versus 14.0) (P < 0.05). RWL, parity and regression on lactation length had no significant effect on number of CL. In conclusion, sows with higher number of pigs weaned lose more weight. Under the restricted feeding regime applied, high weight loss during lactation prolongs WSI in parity 1 and 2 sows, but has no influence on the ovulation rate at first oestrus after weaning. The ovulation rate is higher in Yorkshire than in Landrace sows. The ovulation rate is independent of parity.  相似文献   

2.
Three intermittent suckling (IS) regimes were evaluated for their effects on lactational oestrus and subsequent fertility. Control sows were weaned (CW; n = 38) at d 26 ± 2 of lactation. In IS19-7D (n=40) and IS19-14D (n=42) sows, IS started at d 19 ± 1 of lactation and sows were weaned 7 or 14 d later. In IS26-7D (n=41), IS started at d 26 ± 1 of lactation and sows were weaned 7d later. During IS, sows were separated from their piglets for 10h/day. Oestrus detection was performed twice daily without a boar and ovulation was confirmed by ultrasound once a week. In IS19-7D, IS19-14D and IS26-7D, respectively, 50%, 64% and 61% of the sows showed oestrus and ovulation during IS (P>0.05), and, of the remaining sows, 100%, 93%, and 69% showed oestrus in the first week after weaning. In CW sows, 95% showed oestrus in the first week after weaning. Parity 1 sows were considerably less likely than older parities (23% vs. 68%) to show oestrus in lactation. Pregnancy rate of the first post partum oestrus (during lactation or after weaning) was 89% (CW), 92% (IS19-7D), 80% (IS19-14D) and 77% (IS26-7D) (P>0.05) and subsequent litter size was 14.5 ± 0.5, 14.5 ± 0.6, 15.3 ± 0.5 and 15.2 ± 0.8, respectively (P>0.05). Sows mated during lactation had similar pregnancy rate and litter size to those mated after weaning. Hence, ongoing lactation for the first 2-9 d of pregnancy did not negatively affect fertility. A total of 50-64% of IS sows showed lactational oestrus, regardless of the stage of lactation. Pregnancy rates and litter size were similar to control sows, and were not affected by stage of lactation at mating.  相似文献   

3.
Prepuberal gilts reared and managed to 85-90 kg live weight in a common system were allocated at random to one of three first-mating treatments in an experiment conducted over a period of more than 5 years. In two of the treatments, gilts received a single i.m. injection of 400 IU equine chorionic gonadotropin (eCG) and 200 IU human chorionic gonadotropin (hCG) (PG600; Intervet) and were either inseminated 4 and 5 days later on a fixed-time basis regardless of oestrus (treatment A), or at the second oestrus following treatment (treatment B). The third group of gilts remained untreated and was inseminated on the first spontaneous oestrus (treatment C). Thereafter, all gilts were managed in the same way and those observed in oestrus were re-inseminated. Significantly more gilts returned to oestrus after the first service in treatment A (35%) than in treatment B and C (12 and 17%, respectively; P<0.01). Gilts farrowed to the first or repeat inseminations at a significantly younger age (P<0.01) in treatment A (304 days) than treatment B (324 days) and C (320 days). The age difference at farrowing remained in surviving gilts at the end of their third parity. The first farrowing performance of the gilts was significantly affected by treatment in terms of litter size at birth (A 7.0, B 8.4 and C 8.3 live piglets per gilt; P<0.01), litter size at weaning (A 6.2, B 7.2 and C 7.2 live piglets per gilt, P<0.05), and piglet birth weight (A 1.4, B 1.3 and C 1.3 kg; P<0.05) but piglet survival rate and weaning weight were not affected by treatment. The live weights of the gilts were significantly different between the treatments at first insemination (A 95.7, B 106.5 and C 109.2 kg; P<0.01) but not when the first litter was weaned (A 133.6, B 135.1 and C 136.6; P>0.05). After the first farrowing there were no differences between the treatments in terms of the survival rate, productive or reproductive performance of the gilts/sows and their offspring. Without conducting a detailed cost-benefit-calculation it was deduced that, from an economical point of view, differences between treatment A and treatments B and C are negligible because the savings associated with farrowing at a younger age on this treatment just about compensated for any additional costs associated with the treatment and the lower number of piglets born at the first farrowing.  相似文献   

4.
Pre-mating diets can influence piglet birth weight and within-litter birth weight variation and thereby piglet survival and development. The major objective of this study was to evaluate the litter characteristics of young sows whose pre-mating diets received different supplementation. The supplements included a top-dressing of 200 g, consisting of either wheat (CON) or wheat plus microfibrillated cellulose, L-carnitine or L-arginine at one of two supplementation levels (low and high) in late lactation and during the weaning-to-oestrus interval (WEI). The second objective was to investigate the role of body condition loss and IGF-1 concentration during the WEI for subsequent litter characteristics. In total, sows after their first (N = 41) and second (N = 15) lactation were used. One week before weaning, the sows were allocated to the seven treatments based on the number of piglets and BW loss from farrowing until 1 week before weaning. Pre-mating diets did not affect litter characteristics at subsequent farrowing. However, at subsequent farrowing, sows after their first lactation had a lower total number of piglets born per litter (18.3 v. 20.3), higher mean piglet birth weight (1 365 v. 1 253 g), lower CV of birth weight (20.0 v. 26.1%) and lower percentage of piglets < 1 000 g (11.5 v. 24.4%) than sows after their second lactation. Litter weight at second parturition was positively related to IGF-1 during the WEI after first lactation (P < 0.04). Within parity, piglet mean birth weight was positively related to IGF-1 at oestrus (P < 0.02). Surprisingly, within parity, a higher relative loin muscle depth loss during previous lactation was related to lower CV and SD of birth weight (P < 0.05, for both). In conclusion, pre-mating diets did not affect litter characteristics at subsequent birth. However, a higher IGF-1 concentration during the WEI was positively associated with subsequent litter weight and piglet mean birth weight. Further studies should elucidate the role of IGF-1 during the WEI for subsequent litter characteristics and dietary interventions to stimulate IGF-1.  相似文献   

5.
The present study was performed to evaluate retrospectively the influence of birth litter size, birth parity number, performance test parameters (growth rate from birth to 100kg body weight and backfat thickness at 100kg body weight) and age at first mating (AFM) of gilts on their reproductive performance as sows. Traits analysed included remating rate in gilts (RRG), litter size, weaning-to-first-service interval (WSI), remating rate in sows and farrowing rate (FR). Data were collected from 11 Swedish Landrace (L) and 8 Swedish Yorkshire (Y) nucleus herds and included 20712 farrowing records from sow parities 1-5. Sows that farrowed for the first time during 1993-1997, having complete records of performance test and AFM, were followed up to investigate their subsequent reproductive performance until their last farrowing in 1999. Analysis of variance and multiple regression were applied to continuous data. Logistic regression was applied to categorical data. The analyses were based on the same animals and the records were split into six groups of females, i.e. gilts, primiparous sows, and sows in parities 2-5, respectively. Each additional piglet in the litter in which the gilt was born was associated with an increase of her own litter size of between 0.07 and 0.1 piglets per litter (P<0.001). Gilts born from sow parity 1 had a longer WSI as primiparous sows compared with gilts born from sow parity 4 (0.3 days; P<0.05) or parity 5 (0.4 days; P<0.01). Gilts with a higher growth rate of up to 100kg body weight had a larger litter size (all parities 1-5; P<0.05), shorter WSI (all parities 1-5; P<0.05) and higher FR (parities 2 and 5; P<0.05) than gilts with a lower growth rate. Gilts with a high backfat thickness at 100kg body weight had a shorter WSI as primiparous sows (P<0.001) compared with low backfat gilts, and 0.1 piglets per litter more as second parity sows (P<0.01). A 10 day increase in AFM resulted in an increase in litter size of about 0.1 piglet for primiparous sows (P<0.001) and a decrease (P<0.05) for sow parities 4 and 5.  相似文献   

6.
The effect of weaning to oestrus interval, oestrus duration, parity, lactation length, breed and their interactions on changes of vaginal impedance in sows after weaning and during oestrus was examined. The impedance measurements were carried out by a four-electrode method. The interval from weaning to oestrus was significantly longer in sows with the length of lactation 21-25 days than 26-30 days and 31-36 days and in primiparous than multiparous sows. The interval from weaning to oestrus was negatively correlated with the length of lactation (r=-0.21; P<0.05), parity (r=-0.36; P<0.01) and oestrus duration (r=-0.26; P<0.01). The weaning to oestrus interval, oestrus duration, parity and lactation length had a significant effect and the breed of sows had no influence on the vaginal impedance in peri-oestrus. The decrease of vaginal impedance after weaning was delayed in sows with a longer weaning to oestrus interval and in primiparous than multiparous sows. The decline of vaginal impedance during peri-oestrus was more gradual in sows with a longer interval from weaning to oestrus, shorter lactation, primiparous sows and sows with the length of oestrus 36 h and 72 h and more. The nadir of vaginal impedance occurred earlier before oestrus in sows with a shorter oestrus. The interaction of weaning to oestrus interval with parity and oestrus duration and the interaction of oestrus duration with parity significantly affected the vaginal impedance in weaned sows. In conclusion, the weaning to oestrus interval, oestrus duration, parity and lactation length considerably influence the vaginal impedance in sows during peri-oestrus. The findings indicate that the impedance technique may be a useful method for a study of factors and processes that accelerate or slow down the return to oestrus after weaning and affect oestrus duration in sows.  相似文献   

7.
In a retrospective study, based on data from the national litter recording system, farrowing rate and litter size of sows served (inseminated or mated) during the lactation period (n = 574) or after a lactation period shorter than 28 days (n = 14,219) were analysed. The results were compared with the corresponding figures for sows with lactation length between 28 and 35 days and weaning to first service interval of 4 or 5 days (reference group; n = 41,741). The farrowing rate of the reference group was 80.9% and subsequent litter size was 13.7 total piglets born. Among sows served prior to weaning, the farrowing rates and litter sizes were significantly lower for those served earlier than 22 days post-farrowing compared to those served later (P < 0.05). Shorter lactations than 28 days and service within 10 days post-weaning led to lower farrowing rates than in the reference group (P < 0.01). Significant differences were seen after different lactation lengths. After correction for weaning to service interval, preceding litter size weaned, parity, breed and the interaction between parity and breed, litter size was significantly and positively associated with the preceding lactation length. The study shows that service within the first 3 weeks post-farrowing results in reduced reproductive performance.  相似文献   

8.
Ten crossbred, fourth or fifth parity sows were divided into 2 groups - high (H) and low (L) - according to their backfat thickness 9 days before parturition. Body weight, backfat thickness and litter weight were recorded repeatedly during a 5 week lactation period. The length of the interval from weaning to first oestrus was also noted. All sows were fed a commercial diet (11.9 MJ/kg, 14.5% crude protein). During gestation, daily food intake was 2.2 kg/sow, while during lactation it was 3.0 kg/sow plus 0.4 kg/piglet. Blood samples were drawn on day 9 before parturition and on days 2,7,14 and 21 of lactation. The samples were analysed to determine concentrations of glucose, urea nitrogen, creatinine, triglycerides, free fatty acids and beta-hydroxybutyric acid. In both groups, concentrations of free fatty acids and urea nitrogen were low on day 9 before parturition while those of triglycerides were high, indicating anabolism regardless of backfat thickness. During the first week of lactation, concentrations of free fatty acids increased in the H-group but not in the L-group, and concentrations of urea nitrogen were higher in the H-group. These differences, together with the greater loss of weight observed in the H-group, indicate that catabolism of maternal fat and protein depots was more pronounced in the Η-group than in the L-group during this time. On day 14 of lactation, both groups showed equally low concentrations of free fatty acids, decreasing creatinine concentrations and stable triglyceride and urea nitrogen concentrations. Furthermore, weight loss during the second and third weeks of lactation was low in both groups. These facts, taken together, indicate that the catabolic rate was decreasing in both groups during this period. No differences in return to oestrus interval were noted between the groups. The present study indicates that under a restricted feeding regime the catabolic rate during the first week of lactation is higher in sows with higher backfat thickness in late gestation. As lactation progresses, a more balanced metabolism is achieved regardless of backfat thickness, which may tend to reduce differences in return to oestrous interval.  相似文献   

9.
Feeding n-3 long-chain polyunsaturated fatty acids (LCPUFA) to gilts or sows has shown different responses to litter growth, pre-weaning mortality and subsequent reproductive performance of the sow. Two hypotheses were tested: (1) that feeding a marine oil-based supplement rich in protected n-3 LCPUFAs to gilts in established gestation would improve the growth performance of their litters; and (2) that continued feeding of the supplement during lactation and after weaning would offset the negative effects of lactational catabolism induced, using an established experimental model involving feed restriction of lactating primiparous sows. A total of 117 primiparous sows were pair-matched at day 60 of gestation by weight, and when possible, litter of origin, and were allocated to be either control sows (CON) fed standard gestation and lactation diets, or treated sows (LCPUFA) fed the standard diets supplemented with 84 g/day of a n-3 LCPUFA rich supplement, from day 60 of first gestation, through a 21-day lactation, and until euthanasia at day 30 of their second gestation. All sows were feed restricted during the last 7 days of lactation to induce catabolism, providing a background challenge against which to determine beneficial effects of n-3 LCPUFA supplementation on subsequent reproduction. In the absence of an effect on litter size or birth weight, n-3 LCPUFA tended to improve piglet BW gain from birth until 34 days after weaning (P = 0.06), while increasing pre-weaning mortality (P = 0.05). It did not affect energy utilization by the sow during lactation, thus not improving the catabolic state of the sows. Supplementation from weaning until day 30 of second gestation did not have an effect on embryonic weight, ovulation rate or early embryonic survival, but did increase corpora lutea (CL) weight (P = 0.001). Eicosapentaenoic acid and docosahexaenoic acid (DHA) levels were increased in sow serum and CL (P < 0.001), whereas only DHA levels increased in embryos (P < 0.01). In conclusion, feeding n-3 LCPUFA to gilts tended to improve litter growth, but did not have an effect on overall subsequent reproductive performance.  相似文献   

10.
The effect of weaning the 4–5 heaviest piglets in the litter on day 33 of lactation and the remainder 2 days later (fractionated weaning) on plasma levels of prolactin, Cortisol, oestradiol-17β (E2), progesterone (P4) and LH, as well as on the weaning to oestrus interval in primiparous sows was studied. Twelve crossbred sows were grouped into 6 pairs according to farrowing date and litter size. The litter of 1 sow in each pair (F) was weaned in 2 stages, and the other conventionally weaned at 35 days (C). Blood samples were collected via a permanent jugular vein catheter every 3 h from 9 am to 9 pm daily throughout the experimental period, and intensively at 15 min intervals for 12 h on the day of first and final weaning and for 6 h on the day after each weaning. All sows were slaughtered following their first post-weaning oestrus and the reproductive organs were macroscopically examined. Lactational oestrus was not observed in any of the sows. Sows from 5 out of 6 pairs showed oestrus within 8 days of weaning and post-mortem examination showed normal ovulation. There was a tendency for the F sows to have a shorter weaning to oestrus interval, as compared with the C sows (5 of 6 pairs, 4.8 days v 5.6 days). The plasma levels of prolactin around weaning were not significantly different between the 2 groups. Within 6 h after final weaning, the prolactin concentrations decreased gradually from 7.6 and 8.7 to 1.6 and 1.7 µg/l in the control and treatment groups, respectively. The plasma levels of Cortisol, showing a diurnal rhythm (with the lowest level at 6 and/or 9 p m), did on no occasion differ between the 2 groups. On the day of final weaning, no diurnal rhythm was observed, with Cortisol remaining high at 6 and 9 pm. The plasma levels of E2 and P4 were low until final weaning in both groups. After final weaning the E2 levels rose faster in the F sows than in the C sows, to 44.3 and 34.8 pmol/l, respectively, on day 2 (p < 0.01). No significant differences in levels of plasma LH and the number of LH pulses were observed between the groups. After final weaning the average and base levels of LH and the number of LH pulse(s) increased significantly.  相似文献   

11.
Effects of supplementation of dextrose to the diet of sows during the weaning-to-estrus interval (WEI) on subsequent litter size and within-litter variation were investigated. After weaning, 223 sows (first to fifth parity) were fed 3.5 kg/d. Half of the sows additionally received 150 g of dextrose per day as topdressing on the feed. WEI and estrus duration were determined as well as subsequent pregnancy rate and litter size. Piglets were weighed individually at birth and at weaning (day 26.4; S.D.: 2.5). Supplementation of dextrose to the diet during the WEI did not affect WEI (106 h), pregnancy rate (88.2%), farrowing rate (84.2%), subsequent litter size (total born: 13.70), or birth weight (1599 g). The within-litter variation in birth weight was lower in sows on the dextrose treatment (CV: 17.5% versus 21.2% for the dextrose and control group, respectively, P=0.03). From this experiment, we concluded that addition of dextrose during the weaning to estrus interval did not increase litter size, but seems to affect the uniformity in birth weight of the litter.  相似文献   

12.
Pruteen, a fermentation protein material produced by ICI, was tested at 8% inclusion as a replacement for all the soya-bean meal and fish-meal in the diet of sows in a multiple-generation breeding study. Parent sows on the two dietary treatments each produced six litters, and the three subsequent generations of sows reared from the F1A, F2A and F3A parities each produced three litters. Control and Pruteen-fed sows were housed and reared under identical conditions throughout the study.Replacement of all the non-cereal protein by Pruteen had no adverse effect on the health or overall reproductive performance of the sows or on the health or viability of the piglets. A total of over 5000 piglets were born to sows fed on the control and Pruteen-containing diets, and there were no differences between treatments in litter size and birth weight (Control: 10.6/litter, 1.32 kg; Pruteen: 10.9/littler, 1.35 kg), and weight at weaning at 3 weeks of age (Control: 8.2/litter, 5.26 kg; Pruteen: 8.4/litter, 5.19 kg).Weight gain of the sows in pregnancy was satisfactory and there was no effect of Pruteen on lactation performance, as shown by the mean sow weight loss in lactation (17 kg for both treatments) or the mean total litter weight at weaning (Control: 43.7 kg; Pruteen: 43.6 kg). The overall number of days from weaning to effective service (Control: 9.9; Pruteen: 8.5) was satisfactory.Pruteen proved to be a satisfactory ingredient in the diet of breeding pigs.  相似文献   

13.
Eighteen sows (6 primiparous and 12 multiparous) were allotted randomly within parity to two lactational treatments: litter separation (LS; 6 h/day) plus boar exposure (BE; 1 h/day; N = 14) beginning 8 days before weaning (4 weeks) and no LS + no BE (controls; N = 4). Blood was collected from all sows via indwelling venous catheters at 20-min intervals for 5 h on Days -1, 0, 1, 2 and 3 from start of treatment. Control sows and those exposed to LS + BE not exhibiting oestrus during lactation were resampled on Days -1, 0, 1 and 2 from weaning. All 10 multiparous sows receiving LS + BE exhibited oestrus during lactation, whereas none of the 4 primiparous sows exposed to LS + BE or the 2 control multiparous and 2 control primiparous sows exhibited lactational oestrus. Overall concentrations of LH in serum were higher (P less than 0.05) in sows receiving LS + BE than in control sows during lactation, whereas overall FSH was higher (P less than 0.05) in primiparous than multiparous sows. Number and amplitude of pulses of LH were greater (P less than 0.05) for treated primiparous than multiparous sows during lactation. Oestradiol-17 beta increased (P less than 0.05) in sows during LS + BE and was higher (P less than 0.01) in multiparous sows of this group than control multiparous or treated primiparous sows. Preweaning concentrations of cortisol and progesterone in serum were higher (P less than 0.05) in treated than control sows for multiparous and primiparous animals. In sows resampled at weaning, the number of pulses of LH was greater (P less than 0.05) in treated primiparous than in control sows. Postweaning concentrations of FSH in serum were unaffected by preweaning treatments. It was concluded that (1) litter separation and boar exposure increased basal and pulsatile secretion of LH in multiparous and primiparous sows; (2) lack of ovarian follicular development and oestradiol secretion may preclude expression of oestrus in primiparous sows during lactation, despite elevated concentrations of FSH and LH in serum; and (3) if elevated concentrations of cortisol and progesterone inhibit the onset of oestrous cycles, in response to litter separation and boar exposure during lactation, the effect is limited to primiparous sows.  相似文献   

14.
The object of this investigation was to determine the relationships between clinical findings and hormonal patterns in primiparous sows with different lactation length and litter size during lactation, weaning and to the first oestrus. Seven pairs of primiparous full sib sows were used to determine the effect of lactation length with normal litter size. One sow of each pair was assigned to nurse the piglets for 3 weeks (group A) while the other nusred for 5 weeks (group B). Another 8 primiparous sows (group C) were assigned to nurse 2–4 piglets during a 5-week lactation period. Oestrus detection was performed twice daily and laparoscopic examination every 2 weeks. If the sows did not come in oestrus within 3 weeks after weaning they were slaughtered. Peripheral plasma levels of progesterone, oestradiol-17β and LH were estimated by radioimmunoassays throughout the experimental period.  相似文献   

15.
Within-litter variation of piglet birth weight (BW0) is associated with an increased piglet mortality and a high variability in pig weight at weaning and weight or age at slaughter. Data collected in two experimental herds were used to quantify within-litter variability in BW0 and to assess the influence of factors mainly related to the sow. Within 24 h after birth, piglets born alive were individually weighed and stillborn piglets were collectively (first data set) or individually (second data set) weighed. The first data set was restricted to litters with no or only one stillborn piglet (3338 litters). It was used to assess the influence of genetic selection on BW0 variation by comparing litter characteristics before (1994 to 1996) and after (2001 to 2004) the development of hyperprolific sows in this herd. The second data set included all litters (n = 1596) from sows born between 2000 and 2004. For each litter, mean BW0 (mBW0) and its coefficient of variation (CVBW0) were calculated. Then, variance analyses were performed to test the influence of litter size, parity, year of sow birth and season at conception. Prolificacy improvement was associated with an increased CVBW0 in litters from pure Large White (LW) and Landrace × Large White (LR × LW) crossbred sows. The CVBW0 averaged 21% and was significantly influenced by litter size and parity. It increased from 15% to 24% when litter size varied from less than 10 piglets to more than 15 piglets. The proportion of small piglets (i.e. weighing less than 1 kg) increased concomitantly. The CVBW0 was not repeatable from a parity to the following. It was lowest for first and second parities (20%) and thereafter increased progressively. The CVBW0 was positively related to sow's backfat thickness gain during gestation. Taking into account litter size, parity, year of sow birth and season at conception explained 20% of BW0 variation. Thus, major part of heterogeneity is due to other factors, presumably including embryo genotype, on the one hand, and factors that influence embryo and foetus development, such as epigenetic factors, on the other hand.  相似文献   

16.
In pig production, parturition progress is a key event for sow's reproductive performance, evaluated by piglet survival and piglets' performance. The aim of this study was to investigate the impact of feeding a high-fibre (HF) diet during gestation on parturition progress and reproductive performance of sows. Forty-two primiparous sows (Large-White × Landrace crossbred) were fed during gestation either a control diet (C diet; 2.40 kg/day, 3.2% crude fibre, in % of dry matter (DM)), or a HF diet (2.80 kg/day, 12.4% crude fibre, in % of DM). All sows received 33 MJ digestible energy per day. Continuous video recordings were done on the parturition day to determine postural changes (standing, sitting, lying) and behavioural activities (nesting behaviour, uterine contractions, restlessness, social behaviour towards piglets) during parturition. Duration of parturition and individual birth intervals were also measured. Piglets' growth was evaluated by weekly weighing from birth until weaning, at 26.5 days of age. Sows were weighed and backfat thickness was measured at mating, on day 105 of gestation, on the 1st day post partum, and at weaning. Durations of parturition and of birth intervals were not affected by the gestation diet and averaged 211 ± 12 min and 16.5 ± 0.9 min (mean ± s.e.), respectively. During the parturition progress, the gestation diet did not affect the frequency and the time devoted to postural and behavioural activities. Dietary treatment during gestation did not influence duration of gestation and weaning-to-oestrus interval, as well as litter size, and number of stillborn and weaned piglets. Piglet weight at birth did not differ between gestation dietary treatments but piglets nursed by HF sows showed a 13.5% greater growth rate during the 1st week of life (P < 0.01) and tended to be heavier at weaning (P = 0.06) compared with C piglets. The HF sows were leaner at the end of gestation (P < 0.05), but variations of sows' weight during gestation and lactation were not affected by the gestation diet. All sows lost the same amount of backfat thickness during lactation. During lactation, the average daily feed intake was not significantly affected by the gestation diet. This study shows that substituting a control diet for a HF diet during gestation has limited effects on farrowing progress and reproductive performance, but improved piglets' growth rate during the 1st week of life and tended to increase their live weight at weaning.  相似文献   

17.
Trials to investigate the effects of limited suckling on sow reproduction and piglet growth were conducted using 41 first parity and 32 second parity Yorkshire sows. Separation of sows from their litters (22 hrs/day, days 21-35 postpartum) induced estrus in 60% of primiparous and 72% of second parity sows during lactation. Compared to control group animals, primiparous sows had higher weaning weights and second parity sows higher rates of embryo survival on day 30 of gestation. Piglets subjected to suckling restriction had weights, at 2 weeks after weaning, equal to those weaned after 5 weeks of unrestricted suckling. We conclude that suckling restriction can provide the dual benefits of an extended piglet nursing period and a decreased breeding to breeding interval in sows.  相似文献   

18.
Piglet birth weight and within-litter birth weight variation are important for piglet survival and growth. Pre-mating diets may improve IGF-1 and follicle development during the weaning-to-oestrus interval (WEI) and subsequent piglet birth weight. The objective of this study was to modulate IGF-1 concentration during late lactation and the WEI of young sows by using specific pre-mating diets supplemented with microfibrillated cellulose (MF), l-carnitine (LC) or l-arginine (AR). A further objective was to investigate the relationship between IGF-1 and subsequent follicle development and oestrus and ovulation characteristics. In total, 56 first-parity and 20 second-parity sows in three consecutive batches were used for this experiment. Sows received daily either wheat (CON) or wheat plus MF, LC or AR at one of two supplementation levels (low and high) during last week of lactation and WEI. From weaning onwards, follicle and corpus luteum (CL) diameters were repeatedly measured with ultrasound. Blood samples were collected during the WEI for IGF-1 and on day 21 of pregnancy for progesterone analyses, respectively. Insulin-like growth factor-1 concentration, follicle diameter, oestrus and ovulation characteristics and CL diameter were not affected by pre-mating diets. Low IGF-1 class (≤156 ng/ml, N = 22) sows had smaller follicles at weaning (3.5 v. 3.8 mm, P < 0.05) and a longer weaning-to-ovulation interval (147.2 v. 129.8 h, P < 0.05) than high IGF-1 class sows. In first-parity sows, high loin muscle depth (LM) loss sows (≥8%, N = 28) had lower IGF-1 concentrations at weaning (167 v. 214 ng/ml, P < 0.05) compared to low LM loss sows (<8%, N = 28). However, after weaning, IGF-1 concentrations increased and did not differ between high LM loss and low LM loss sows. In conclusion, the different supplemented compounds in pre-mating diets did not improve IGF-1 concentrations around weaning in young sows. Furthermore, high body condition loss caused lower IGF-1 concentrations at weaning, but these levels rapidly recovered after weaning and were related to follicle development and the interval from weaning to ovulation.  相似文献   

19.
Sixteen purebred Iberian (IB) sows were used in two consecutive trials to determine the efficiency of conversion of sow's milk into piglet body weight (BW) gain and the relationship between milk protein and body protein retention and between milk energy yield and body energy retention in the nursing IB piglet. In each trial, four sows were selected in order to evaluate their milk production, litter growth and nutrient balance measurements, together with four additional sows for milk sampling. Litter size was equalized to six piglets. Daily milk yield (MY) was determined weekly by the weigh-suckle-weigh technique over a 34-day lactation period. Piglets were weighed individually at birth and then weekly from day 5 of lactation. Milk samples were collected on days 5, 12, 19, 26 and 34 post partum. The comparative slaughter procedure was used to determine piglet nutrient and energy retention. One piglet from each litter was slaughtered at birth and four on the morning of day 35. Total MY was on average 5.175 ± 0.157 kg/day. The average chemical composition (g/kg) of the milk was 179 ± 4 dry matter, 53.4 ± 1.0 CP, 58.5 ± 3.8 fat, 10.4 ± 0.3 ash and 56.9 ± 2.3 lactose. Milk gross energy (GE) was 4.626 ± 0.145 MJ/kg. Milk intake per piglet tended to increase in trial 2 (832 v. 893 g/day; P = 0.066). Piglet BW gain contained (g/kg) 172.1 ± 1.3 protein, 151.5 ± 3.5 fat, 41.4 ± 0.6 ash and 635 ± 3 water and 10.127 ± 0.126 MJ GE/kg. Throughout the 34-day nursing period, the piglets grew at an average rate of 168 ± 3 g/day. The ratio of daily piglet BW gain to daily MY was 0.195 ± 0.002 g/g and the gain per MJ milk GE intake was 41.9 ± 0.5 g/MJ. The overall efficiency of protein accretion (g CP gain/g CP milk intake) was low and declined in trial 2 (0.619 v. 0.571; P = 0.016). Nutrient and energy deposition between birth and weaning were 27.4 ± 0.5 g/day protein, 24.2 ± 0.8 g/day fat and 1615 ± 40 kJ/day energy. Piglet energy requirements for maintenance were 404 kJ metabolizable energy (ME)/kg BW0.75. ME was used for growth with a net efficiency of 0.584. These results suggest that poor efficiency in the use of sow's milk nutrients rather than a shortage in milk nutrient supply might explain the low growth rate of the suckling IB piglet.  相似文献   

20.
Piglet birth weight and litter uniformity are important for piglet survival. Insulin-stimulating sow diets before mating may improve subsequent piglet birth weights and litter uniformity, but the physiological mechanisms involved are not clear. This study evaluated effects of different levels of insulin-stimulating feed components (dextrose plus starch; fed twice daily) during the weaning-to-estrus interval (WEI) on plasma insulin and IGF-1 concentrations, and on follicle development and subsequent luteal, fetal and placental development and uniformity at days 42 to 43 of pregnancy. During WEI, multiparous sows were isocalorically fed diets supplemented with 375 g/day dextrose plus 375 g/day corn starch (INS-H), with 172 g/day dextrose plus 172 g/day corn starch and 144 g/day animal fat (INS-L), or with 263 g/day animal fat (CON). Jugular vein catheters were inserted through the ear vein at 1.5 days before weaning to asses plasma insulin and IGF-1 concentrations. After estrus, all sows received a standard gestation diet until slaughter at days 42 to 43 of pregnancy. The dextrose plus starch-diets enhanced the postprandial insulin response in a dose-dependent manner (e.g. at day 2 insulin area under the curve was 4516 μU/444 min for CON, 8197 μU/444 min for INS-L and 10 894 μU/444 min for INS-H; s.e.m. = 694; P < 0.001), but did not affect plasma IGF-1 concentrations during the first 3 days of WEI. Follicle development and subsequent luteal, fetal and placental development and uniformity were not affected by the dietary treatments, nor related to plasma insulin and IGF-1 concentrations during WEI. Pre-weaning plasma insulin and IGF-1 concentrations were negatively related to sow body condition loss during lactation, but were not related to subsequent reproduction characteristics. This study shows that dietary dextrose plus starch are effective in stimulating insulin secretion (both postprandial peak and long-term concentration), but not IGF-1 secretion during the first 3 days after weaning in multiparous sows. The extreme insulin-stimulating diets during WEI did, however, not improve follicle development, or subsequent development and uniformity of fetuses and placentas in these high-prolific sows (27.0 ± 0.6 ovulations; 18.6 ± 0.6 vital fetuses).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号