首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum (ER) contains a stringent quality control system that ensures the correct folding of newly synthesized proteins to be exported via the secretory pathway. In this system UDP-Glc:glycoprotein glucosyltransferase (GT) serves as a glycoprotein specific folding sensor by specifically glucosylating N-linked glycans in misfolded glycoproteins thus retaining them in the calnexin/calreticulin chaperone cycle. To investigate how GT senses the folding status of glycoproteins, we generated RNase B heterodimers consisting of a folded and a misfolded domain. Only glycans linked to the misfolded domain were found to be glucosylated, indicating that the enzyme recognizes folding defects at the level of individual domains and only reglucosylates glycans directly attached to a misfolded domain. The result was confirmed with complexes of soybean agglutinin and misfolded thyroglobulin.  相似文献   

2.
Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER.  相似文献   

3.
Secretory and membrane N-linked glycoproteins undergo folding and oligomeric assembly in the endoplasmic reticulum with the aid of a folding mechanism known as the calnexin cycle. UDP–glucose glycoprotein:glucosyltransferase (UGGT) is the sensor component of the calnexin cycle, which recognizes these glycoproteins when they are incompletely folded, and transfers a glucose residue from UDP–glucose to N-linked Man9-GlcNAc2 glycans. To determine how UGGT recognizes incompletely folded glycoproteins, we used purified enzyme to glucosylate a set of Man9-GlcNAc2 glycopeptide substrates in vitro, and determined quantitatively the glucose incorporation into each glycan by mass spectrometry. A ranked order of glycopeptide specificity was found that provides the criteria for the recognition of substrates by UGGT. The preference for amino-acid residues close to N-linked glycans provides criteria for the recognition of glycopeptide substrates by UGGT.  相似文献   

4.
The UDP-Glc:glycoprotein glucosyltransferase (UGGT) is the sensor of glycoprotein conformations in the glycoprotein folding quality control as it exclusively glucosylates glycoproteins not displaying their native conformations. Monoglucosylated glycoproteins thus formed may interact with the lectin-chaperones calnexin (CNX) and calreticulin (CRT). This interaction prevents premature exit of folding intermediates to the Golgi and enhances folding efficiency. Bioinformatic analysis showed that in C. elegans there are two open reading frames (F48E3.3 and F26H9.8 to be referred as uggt-1 and uggt-2, respectively) coding for UGGT homologues. Expression of both genes in Schizosaccharomyces pombe mutants devoid of UGGT activity showed that uggt-1 codes for an active UGGT protein (CeUGGT-1). On the other hand, uggt-2 coded for a protein (CeUGGT-2) apparently not displaying a canonical UGGT activity. This protein was essential for viability, although cnx/crt null worms were viable. We constructed transgenic worms carrying the uggt-1 promoter linked to the green fluorescent protein (GFP) coding sequence and found that CeUGGT-1 is expressed in cells of the nervous system. uggt-1 is upregulated under ER stress through the ire-1 arm of the unfolded protein response (UPR). Real-time PCR analysis showed that both uggt-1 and uggt-2 genes are expressed during the entire C. elegans life cycle. RNAi-mediated depletion of CeUGGT-1 but not of CeUGGT-2 resulted in a reduced lifespan and that of CeUGGT-1 and CeUGGT-2 in a developmental delay. We found that both CeUGGT1 and CeUGGT2 play a protective role under ER stress conditions, since 10 μg/ml tunicamycin arrested development at the L2/L3 stage of both uggt-1(RNAi) and uggt-2(RNAi) but not of control worms. Furthermore, we found that the role of CeUGGT-2 but not CeUGGT-1 is significant in relieving low ER stress levels in the absence of the ire-1 unfolding protein response signaling pathway. Our results indicate that both C. elegans UGGT homologues have distinct biological functions.  相似文献   

5.
UDP-glucose:glycoprotein glucosyltransferase (UGT) is a soluble protein of the endoplasmic reticulum (ER) that operates as a gatekeeper for quality control by preventing transport of improperly folded glycoproteins out of the ER. We report the isolation of two cDNAs encoding human UDP-glucose:glycoprotein glucosyltransferase homologues. HUGT1 encodes a 1555 amino acid polypeptide that, upon cleavage of an N-terminal signal peptide, is predicted to produce a soluble 173 kDa protein with the ER retrieval signal REEL. HUGT2 encodes a 1516 amino acid polypeptide that also contains a signal peptide and the ER retrieval signal HDEL. HUGT1 shares 55% identity with HUGT2 and 31-45% identity with Drosophila, Caenorhabditis elegans, and Schizosaccharomyces pombe homologues, with most extensive conservation of residues in the carboxy-terminal fifth of the protein, the proposed catalytic domain. HUGT1 is expressed as multiple mRNA species that are induced to similar extents upon disruption of protein folding in the ER. In contrast, HUGT2 is transcribed as a single mRNA species that is not induced under similar conditions. HUGT1 and HUGT2 mRNAs are broadly expressed in multiple tissues and differ slightly in their tissue distribution. The HUGT1 and HUGT2 cDNAs were expressed by transient transfection in COS-1 monkey cells to obtain similar levels of protein localized to the ER. Extracts from HUGT1-transfected cells displayed a 27-fold increase in the transfer of [(14)C]glucose from UDP-[(14)C]glucose to denatured substrates. Despite its high degree of sequence identity with HUGT1, the expressed recombinant HUGT2 protein was not functional under the conditions optimized for HUGT1. Site-directed alanine mutagenesis within a highly conserved region of HUGT1 identified four residues that are essential for catalytic function.  相似文献   

6.
The eukaryotic cell monitors the fidelity of protein folding in the endoplasmic reticulum and only permits properly folded and/or assembled proteins to transit to the Golgi compartment in a process termed "quality control." An endoplasmic reticulum (ER) lumenal sensor for quality control is the UDP-glucose:glycoprotein glucosyltransferase that targets unfolded glycoproteins for transient, calcium-dependent glucosylation. This modification mediates glycoprotein interaction with the folding machinery comprised of calnexin or calreticulin in conjunction with ERp57. Two human UGT homologues, HUGT1 and HUGT2, exist that share 55% identity. The highest degree of identity resides in the COOH-terminal 20% of these proteins, the putative catalytic domain of HUGT1. However, only HUGT1 displays the expected functional activity. The contribution of the NH2-terminal remainder of HUGT1 to glucosyltransferase function is presently unknown. In this report we demonstrate that HUGT2 is localized to the ER in a manner that overlaps the distribution of HUGT1. Analysis of a series of HUGT1 and HUGT2 chimeric proteins demonstrated that the carboxyl-terminal region of HUGT2 contains a catalytic domain that is functional in place of the analogous portion of HUGT1. Whereas neither catalytic domain displayed detectable activity when expressed alone, co-expression of either catalytic domain with the noncatalytic amino-terminal portion of HUGT1 conferred UDP-Glc binding and transfer of glucose that was specific for unfolded glycoprotein substrates. The results indicate that the amino-terminal 80% of HUGT1 is required for activation of the catalytic domain, whereas the homologous portion of HUGT2 cannot provide this function.  相似文献   

7.
The UDP-Glc:glycoprotein glucosyltransferase is a soluble protein of the endoplasmic reticulum that catalyzes the glucosylation of protein-linked, glucose-free, high mannose-type oligosaccharides. In vivo, the newly glucosylated compounds are immediately deglucosylated, presumably by glucosidase II. The glucosyltransferase has been purified to apparent homogeneity from rat liver. The enzyme appears to have a molecular weight of 150,000 and 270,000 under denaturing and native conditions, respectively. The pure enzyme shows an almost absolute requirement for Ca2+ ions and for UDP-Glc as sugar donor. The same as crude preparations, the pure enzyme synthesized Glc1 Man7-9GlcNAc2-protein from Man7-9GlcNAc2-protein. Denatured glycoproteins are glucosylated much more efficiently than native ones by the apparently homogeneous glucosyltransferase. Availability of the pure enzyme will allow testing the possible involvement of transient glucosylation of glycoproteins in the folding of glycoproteins and/or in the mechanism by which cells dispose of malfolded glycoproteins in the endoplasmic reticulum.  相似文献   

8.
Selenium is an essential trace element with potent cancer prevention activity in mammals. The 15-kDa selenoprotein (Sep15) has been implicated in the chemopreventive effect of dietary selenium. Although the precise function of Sep15 remains elusive, Sep15 co-purifies with UDP-glucose:glycoprotein glucosyltransferase (GT), an essential regulator of quality control mechanisms within the endoplasmic reticulum. Recent studies identified two GT and two Sep15 homologues in mammals. We characterize interactions between these protein families in this report. Sep15 and GT form a tight 1:1 complex, and these interactions are conserved between mammals and fruit flies. In mammalian cells, Sep15 co-immunoprecipitates with both GT isozymes. In contrast, a Sep15 homologue, designated selenoprotein M (SelM), does not form a complex with GT. Sequence analysis of members of the Sep15 family identified a novel N-terminal cysteine-rich domain in Sep15 that is absent in SelM. This domain contains six conserved cysteine residues that form two CxxC motifs that do not coordinate metal ions. If this domain is deleted or the cysteines are mutated, Sep15 no longer forms a complex with GT. Conversely, if the cysteine-rich domain of Sep15 is fused to the N-terminus of SelM, the resulting chimera is capable of binding GT. These data indicate that the cysteine-rich domain of Sep15 exclusively mediates protein-protein interactions with GT.  相似文献   

9.
UDP-glucose:glycoprotein glucosyltransferase plays a key role in glycoprotein quality control in the endoplasmic reticulum, by virtue of its ability to discriminate folding states. Although lines of evidence have clarified the ability of UGGT to recognize a partially unfolded protein, its mechanistic rationale has been obscure. In this study, the substrate recognition mechanism of UGGT was studied using synthetic substrate of UGGT. Although UGGT has high extent of surface hydrophobicity, it clearly lacks property of typical molecular chaperones. Furthermore, it was revealed that the addition of the substrate caused secondary structure change of UGGT in a dose-dependent manner, resulting that the Kd value of the UGGT-substrate interaction was estimated from theoretical formula based on 1:1 complexation between UGGT and the acceptor substrate. Moreover, the kinetic analysis of glucosyltransferase activity of UGGT elucidated Michaelis constant Km correctly.  相似文献   

10.
The endoplasmic reticulum UDP-Glc:glycoprotein glucosyltransferase (GT) exclusively glucosylates nonnative glycoprotein conformers. GT sequence analysis suggests that it is composed of at least two domains: the N-terminal domain, which composes 80% of the molecule, has no significant similarity to other known proteins and was proposed to be involved in the recognition of non-native conformers and the C-terminal or catalytic domain, which displays a similar size and significant similarity to members of glycosyltransferase family 8. Here, we show that N- and C-terminal domains from Rattus norvegicus and Schizosaccharomyces pombe GTs remained tightly but not covalently bound upon a mild proteolytic treatment and could not be separated without loss of enzymatic activity. The notion of a two-domain protein was reinforced by the synthesis of an active enzyme upon transfection of S. pombe GT null mutants with two expression vectors, each of them encoding one of both domains. Transfection with the C-terminal domain-encoding vector alone yielded an inactive, rapidly degraded protein, thus indicating that the N-terminal domain is required for proper folding of the C-terminal catalytic portion. If, indeed, the N-terminal domain is, as proposed, also involved in glycoprotein conformation recognition, the tight association between N- and C-terminal domains may explain why only N-glycans in close proximity to protein structural perturbations are glucosylated by the enzyme. Although S. pombe and Drosophila melanogaster GT N-terminal domains display an extremely poor similarity (16.3%), chimeras containing either yeast N-terminal and fly C-terminal domains or the inverse construction were enzymatically and functionally active in vivo, thus indicating that the N-terminal domains of both GTs shared three-dimensional features.  相似文献   

11.
Mammalian selenocysteine-containing proteins characterized with respect to function are involved in redox processes and exhibit distinct expression patterns and cellular locations. A recently identified 15-kDa selenoprotein (Sep15) has no homology to previously characterized proteins, and its function is not known. Here we report the intracellular localization and identification of a binding partner for this selenoprotein which implicate Sep15 in the regulation of protein folding. The native Sep15 isolated from rat prostate and mouse liver occurred in a complex with a 150-kDa protein. The latter protein was identified as UDP-glucose:glycoprotein glucosyltransferase (UGTR), the endoplasmic reticulum (ER)-resident protein, which was previously shown to be involved in the quality control of protein folding. UGTR functions by glucosylating misfolded proteins, retaining them in the ER until they are correctly folded or transferring them to degradation pathways. To determine the intracellular localization of Sep15, we expressed a green fluorescent protein-Sep15 fusion protein in CV-1 cells, and this protein was localized to the ER and possibly other perinuclear compartments. We determined that Sep15 contained the N-terminal signal peptide that was essential for translocation and that it was cleaved in the mature protein. However, C-terminal sequences of Sep15 were not involved in trafficking and retention of Sep15. The data suggest that the association between Sep15 and UGTR is responsible for maintaining the selenoprotein in the ER. This report provides the first example of the ER-resident selenoprotein and suggests a possible role of the trace element selenium in the quality control of protein folding.  相似文献   

12.
A membrane-bound UDP-glucose : sterol glucosyltransferase from Solanum melongena (eggplant) leaves was partially purified and its specificity as well as molecular and kinetic properties were defined. Among a wide spectrum of 3-OH steroids (i.e. typical plant sterols, androstane, pregnane and cholestane derivatives, steroidal alkaloids and sapogenins) and triterpenic alcohols, the highest activity was found with 22-oxycholesterol. UDP-glucose appeared to be the best sugar donor. The enzyme preparation was also able to utilize UDP-galactose, TDP-glucose and CDP-glucose as a sugar source for sterol glucosylation, however, at distinctly lower rates. The investigated glucosyltrasferase was stimulated by 2-mercaptoethanol, Triton X-100 and negatively charged phospholipids, and inhibited in the presence of UDP, mono-, di- and triacylglycerols, divalent cations such as Zn(2+), Co(2+), high ionic strength, cholesteryl glucoside, galactoside and xyloside and some amino acid-modifying reagents (SITS, DIDS, PLP, DEPC, pCMBS, NEM, WRK and HNB). Our results suggest that unmodified residues of lysine, tryptophan, cysteine, histidine and dicarboxylic amino acids are essential for full enzymatic activity and indicate that a glutamic (or aspartic) acid residue is necessary for the binding of sugar donor, i.e. UDP-glucose in the active site of the GT-ase while histidine and cysteine residues are both important for the binding of the nucleotide-sugar as well as of the steroidal aglycone.  相似文献   

13.
Id-1 delays senescence but does not immortalize keratinocytes   总被引:16,自引:0,他引:16  
Defining the molecular basis responsible for regulating the proliferative potential of keratinocytes has important implications for normal homeostasis and neoplasia of the skin. Under current culture conditions, neonatal foreskin-derived human keratinocytes possess a relatively short replicative lifespan. Recently it was reported that forced overexpression of the helix-loop-helix protein Id-1 was capable of immortalizing keratinocytes, secondary to activation of telomerase activity and suppression of p16/Rb-mediated growth arrest pathways. To investigate the relationship between Id-1, telomerase activity, telomere length, p16, Rb cell cycle regulators, and senescence, whole populations of keratinocytes were infected with a retrovirus to induce overexpression of Id-1. In these unselected cultures, enhanced Id-1 levels clearly extended the lifespan of keratinocytes, but Id-1 did not prevent the onset of replicative senescence. Under these experimental conditions, Id-1 expression did not trigger induction of telomerase activity, and there was progressive shortening of the telomeres that was accompanied by elevated p16 levels and prevalence of active Rb. The ability of Id-1 to postpone, but not prevent, senescence may be related to partial inhibition of p16 expression, as the Id-1-overexpressing cultures displayed a decreased capacity for 12-O-tetradecanoylphorbol-13-acetate-mediated p16 induction. Thus, while no immortalization was observed, Id-1 could delay the onset of replicative senescence in unselected human keratinocyte populations.  相似文献   

14.
The endoplasmic reticulum enzyme UDP-glucose glycoprotein:glucosyltransferase (UGGT) has the unique property of recognizing incompletely folded glycoproteins and, if they carry an N -linked Man(9)GlcNAc(2)oligosaccharide, of catalyzing the addition of a glucose residue from UDP-glucose. Using peptide sequence information, we have isolated the complete cDNA of rat liver UGGT and expressed it in insect cells. The cDNA specifies an open reading frame which codes for a protein of 1527 residues including an 18 amino acid signal peptide. The protein has a C-terminal tetrapeptide (HEEL) characteristic of endoplasmic reticulum luminal proteins. The purified recombinant enzyme shows the same preference for unfolded polypeptides with N -linked Man(9)GlcNAc(2)glycans as the enzyme purified from rat liver. A genetically engineered Saccharomyces cerevisiae strain capable of producing glyco-proteins with Man(9)GlcNAc(2)core oligosaccharides was constructed and secreted acid phosphatase (G0-AcP) was purified. G0-AcP was used as an acceptor glycoprotein for UGGT and found to be a better substrate than the previously used soybean agglutinin and thyroglobulin. Recombinant rat UGGT has a K (m) of 44 microM for UDP-glucose. A proteolytic fragment of UGGT was found to retain enzymatic activity thus localizing the catalytic site of the enzyme to the C-terminal 37 kDa of the protein. Using site-directed mutagenesis and photoaffinity labeling, we have identified residues D1334, D1336, Q1429, and N1433 to be necessary for the catalytic activity of the enzyme.  相似文献   

15.
It has been proposed that the UDP-Glc:glycoprotein glucosyltransferase, an endoplasmic reticulum enzyme that only glucosylates improperly folded glycoproteins forming protein-linked Glc1Man7-9-GlcNAc2 from the corresponding unglucosylated species, participates together with lectin- like chaperones that recognize monoglucosylated oligosaccharides in the control mechanism by which cells only allow passage of properly folded glycoproteins to the Golgi apparatus. Trypanosoma cruzi cells were used to test this model as in trypanosomatids addition of glucosidase inhibitors leads to the accumulation of only monoglucosylated oligosaccharides, their formation being catalyzed by the UDP- Glc:glycoprotein glucosyltransferase. In all other eukaryotic cells the inhibitors produce underglycosylation of proteins and/or accumulation of oliogosaccharides containing two or three glucose units. Cruzipain, a lysosomal proteinase having three potential N-glycosylation sites, two at the catalytic domain and one at the COOH-terminal domain, was isolated in a glucosylated form from cells grown in the presence of the glucosidase II inhibitor 1-deoxynojirimycin. The oligosaccharides present at the single glycosylation site of the COOH-terminal domain were glucosylated in some cruzipain molecules but not in others, this result being consistent with an asynchronous folding of glycoproteins in the endoplasmic reticulum. In spite of not affecting cell growth rate or the cellular general metabolism in short and long term incubations, 1-deoxynojirimycin caused a marked delay in the arrival of cruzipain to lysosomes. These results are compatible with the model proposed by which monoglucosylated glycoproteins may be transiently retained in the endoplasmic reticulum by lectin-like anchors recognizing monoglucosylated oligosaccharides.  相似文献   

16.
A Drosophila UDP-glucose:glycoprotein glucosyltransferase was isolated, cloned and characterized. Its 1548 amino acid sequence begins with a signal peptide, lacks any putative transmembrane domains and terminates in a potential endoplasmic reticulum retrieval signal, HGEL. The soluble, 170 kDa glycoprotein occurs throughout Drosophila embryos, in microsomes of highly secretory Drosophila Kc cells and in small amounts in cell culture media. The isolated enzyme transfers [14C]glucose from UDP-[14C]Glc to several purified extracellular matrix glycoproteins (laminin, peroxidasin and glutactin) made by these cells, and to bovine thyroglobulin. These proteins must be denatured to accept glucose, which is bound at endoglycosidase H-sensitive sites. The unusual ability to discriminate between malfolded and native glycoproteins is shared by the rat liver homologue, previously described by A.J.Parodi and coworkers. The amino acid sequence presented differs from most glycosyltransferases. There is weak, though significant, similarity with a few bacterial lipopolysaccharide glycotransferases and a yeast protein Kre5p. In contrast, the 56-68% amino acid identities with partial sequences from genome projects of Caenorhabditis elegans, rice and Arabidopsis suggest widespread homologues of the enzyme. This glucosyltransferase fits previously proposed hypotheses for an endoplasmic reticular sensor of the state of folding of newly made glycoproteins.  相似文献   

17.
1. The removal of phospholipids completely abolished the activity of the enzyme UDP-glucose:ceramide glucosyltransferase from Golgi membranes. 2. Modulation of enzyme activity by phospholipids was undertaken on the solubilized form of the enzyme. 3. Well-defined fatty acyl chains and polar head groups were necessary for maximal stimulation by phospholipids. 4. A specific requirement for phosphatidylcholine is suggested by preliminary experiments of reconstitution of enzyme activity with phosphatidylcholine vesicles.  相似文献   

18.
Previous studies have shown the existence of an autonomous mitochondrial UDP-glucose: dolichylmonophosphate glucosyltransferase, located in mitochondrial outer membrane of liver cells. To improve our knowledge about the topographical aspects of glycosylation in mitochondria, we have investigated the organization of this enzyme in intact mitochondria, using controlled proteolysis with trypsin and sensitivity towards amino-acid specific reagents. Our data provides evidence: --for a mitochondrial glucosyltransferase facing the cytoplasmic side of the outer membrane --and for the involvement of histidine and tryptophan residues as well as sulfhydryl groups in the catalytic activity of the enzyme.  相似文献   

19.
We have developed a simple rapid method for measuring UDP-glucose:ceramide glucosyltransferase; the method utilizes ceramide immobilized on the surface of silica gel and [14C]UDP-glucose as substrate. The reaction product, [14C]glucosylceramide, formed on the surface of the silica gel was easily separated from free [14C]UDP-glucose, either by centrifugation or by filtration. The reliability of this solid phase method was evaluated by using rat brain membrane fraction as an enzyme source. This enzyme had an optimal pH of 6.4-6.5 and required Mn2+, Mg2+ in the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Apparent Km values of 8.7 microM for UDP-glucose and 292 microM for ceramide were determined using the new method. Under the optimal conditions, the solid phase method yielded 2-5-times more product than did the method using micellar system. Moreover, the reaction was highly quantitative in its enzyme dose-activity relationship.  相似文献   

20.
Steryl glucosides are characteristic lipids of plant membranes. The biosynthesis of these lipids is catalyzed by the membrane-bound UDP-glucose:sterol glucosyltransferase (EC 2.4.1.173). The purified enzyme (Warnecke and Heinz, Plant Physiol 105 (1994): 1067–1073) has been used for the cloning of a corresponding cDNA from oat (Avena sativa L.). Amino acid sequences derived from the amino terminus of the purified protein and from peptides of a trypsin digestion were used to construct oligonucleotide primers for polymerase chain reaction experiments. Screening of oat and Arabidopsis cDNA libraries with amplified labeled DNA fragments resulted in the isolation of sterol glucosyltransferase-specific cDNAs with insert lengths of ca. 2.3 kb for both plants. These cDNAs encode polypeptides of 608 (oat) and 637 (Arabidopsis) amino acid residues with molecular masses of 66 kDa and 69 kDa, respectively. The first amino acid of the purified oat protein corresponds to the amino acid 133 of the deduced polypeptide. The absence of these N-terminal amino acids reduces the molecular mass to 52 kDa, which is similar to the apparent molecular mass of 56 kDa determined for the purified protein. Different fragments of these cDNAs were expressed in Escherichia coli. Enzyme assays with homogenates of the transformed cells exhibited sterol glucosyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号