首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes a new way to use metatarsals to identify locomotor behavior of fossil hominins. Metatarsal head articular dimensions and diaphyseal strength in a sample of chimpanzees, gorillas, orangutans, and humans (n = 76) are used to explore the relationships of these parameters with different locomotor modes. Results show that ratios between metatarsal head articular proportions and diaphyseal strength of the hallucal and fifth metatarsal discriminate among extant great apes and humans based on their different locomotor modes. In particular, the hallucal and fifth metatarsal characteristics of humans are functionally related to the different ranges of motion and load patterns during stance phase in the forefoot of humans in bipedal locomotion. This method may be applicable to isolated fossil hominin metatarsals to provide new information relevant to debates regarding the evolution of human bipedal locomotion. The second to fourth metatarsals are not useful in distinguishing among hominoids. Further studies should concentrate on measuring other important qualitative and quantitative differences in the shape of the metatarsal head of hominoids that are not reflected in simple geometric reconstructions of the articulation, and gathering more forefoot kinematic data on great apes to better understand differences in range of motion and loading patterns of the metatarsals. Am J Phys Anthropol 143:198–207, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The functional anatomy of the hominin foot has played a crucial role in studies of locomotor evolution in human ancestors and extinct relatives. However, foot fossils are rare, often isolated, and fragmentary. Here, we describe a complete hominin second metatarsal (StW 89) from the 2.0-2.6 million year old deposits of Member 4, Sterkfontein Cave, South Africa. Like many other fossil foot bones, it displays a mosaic of derived human-like features and primitive ape-like features. StW 89 possesses a domed metatarsal head with a prominent sulcus, indicating dorsiflexion at the metatarsophalangeal joint during bipedal walking. However, while the range of motion at the metatarsophalangeal joint is human-like in dorsiflexion, it is ape-like in plantarflexion. Furthermore, StW 89 possesses internal torsion of the head, an anatomy decidedly unlike that found in humans today. Unlike other hominin second metatarsals, StW 89 has a dorsoplantarly gracile base, perhaps suggesting more midfoot laxity. In these latter two anatomies, the StW 89 second metatarsal is quite similar to the recently described second metatarsal of the partial foot from Burtele, Ethiopia. We interpret this combination of anatomies as evidence for a low medial longitudinal arch in a foot engaged in both bipedal locomotion, but also some degree of pedal, and perhaps even hallucal, grasping. Additional fossil evidence will be required to determine if differences between this bone and other second metatarsals from Sterkfontein reflect normal variation in an evolving lineage, or taxonomic diversity.  相似文献   

3.
The midtarsal break was once treated as a dichotomous, non-overlapping trait present in the foot of non-human primates and absent in humans. Recent work indicates that there is considerable variation in human midfoot dorsiflexion, with some overlap with the ape foot. These findings have called into question the uniqueness of the human lateral midfoot, and the use of osteological features in fossil hominins to characterize the midfoot of our extinct ancestors. Here, we present data on plantar pressure and pedal mechanics in a large sample of adults and children (n = 671) to test functional hypotheses concerning variation in midfoot flexibility. Lateral midfoot peak plantar pressure correlates with both sagittal plane flexion at the lateral tarsometatarsal joint, and dorsiflexion at the hallucal metatarsophalangeal joint. The latter finding suggests that midfoot laxity may compromise hallucal propulsion. Multiple regression statistics indicate that a low arch and pronation of the foot explain 40% of variation in midfoot peak plantar pressure, independent of age and BMI. MRI scans on a small subset of study participants (n = 19) reveals that curvature of the base of the 4th metatarsal correlates with lateral midfoot plantar pressure and that specific anatomies of foot bones do indeed reflect relative midfoot flexibility. However, while the shape of the base of the 4th metatarsal may reliably reflect midfoot mobility in individual hominins, given the wide range of overlapping variation in midfoot flexibility in both apes and humans, we caution against generalizing foot function in extinct hominin species until larger fossils samples are available. Am J Phys Anthropol 156:543–552, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.

Background

Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual’s lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.

Methodology/Principal Findings

Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.

Conclusions/Significance

These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution) rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.  相似文献   

5.
Cheiridia are valuable indicators of positional behavior, as they directly contact the substrate, but systematic comparison of the structural properties of both metacarpals and metatarsals has never been carried out. Differences in locomotor behavior among the great apes (knuckle-walking vs. quadrumanous climbing) can produce biomechanical differences that may be elucidated by the parallel study of cross-sectional characteristics of metacarpals and metatarsals. The aim of this work is to study the cross-sectional geometric properties of these bones and their correlation with locomotor behavior in large-bodied hominoids. The comparisons between bending moments of metacarpals and metatarsals of the same ray furnished interesting results. Metacarpals III and especially IV of the knuckle-walking African apes were relatively stronger than those of humans and orangutans, and metatarsal V of humans was relatively stronger than those of the great apes. Interestingly, the relative robusticity of the metacarpal IV of the quadrumanous orangutan was between that of the African apes and that of humans. The main conclusions of the study are: 1) cross-sectional dimensions of metacarpals and metatarsals are influenced by locomotor modes in great apes and humans; 2) interlimb comparisons of cross-sectional properties of metacarpals and metatarsals are good indicators of locomotor modes in great apes and humans; and 3) the results of this study are in accord with those of previous analyses of plantar pressure and morphofunctional traits of the same bones, and with behavioral studies. These results provide a data base from which it will be possible to compare the morphology of the fossils in order to gain insight into the locomotor repertoires of extinct taxa.  相似文献   

6.
Humans, unlike African apes, have relatively robust fifth metatarsals (Mt5) presumably reflecting substantial weight-bearing and stability function in the lateral column of the former. When this morphological difference emerged during hominin evolution is debated. Here we investigate internal diaphyseal structure of Mt5s attributed to Australopithecus (from Sterkfontein), Paranthropus (from Swartkrans), and Homo (from Olduvai, Dmanisi, and Dinaledi) placed in the context of human and African ape Mt5 internal diaphyseal structure. ‘Whole-shaft’ properties were evaluated from 17 cross sections sampling 25% to 75% diaphyseal length using computed tomography. To assess structural patterns, scaled cortical bone thicknesses (sCBT) and scaled second moments of area (sSMA) were visualized and evaluated through penalized discriminant analyses. While the majority of fossil hominin Mt5s exhibited ape-like sCBT, their sSMA were comparatively more human-like. Human-like functional loading of the lateral column existed in at least some fossil hominins, although perhaps surprisingly not in hominins from Dmanisi or Dinaledi.  相似文献   

7.
This study describes a human foot bone assemblage from prehistoric Mangaia, Cook Islands in the context of diaphyseal cross-sectional strength measures. We use this sample to test the hypothesis that habitually unshod individuals who walk over rugged terrain will have stronger foot bones than a sample of habitually shod industrialized people. Specifically, we examine whether the Mangaian sample has a stronger size-adjusted metatarsal (MT) and phalangeal cross-sectional properties than the industrial sample, drawn from the Terry Collection. Contrary to expectations, residual analyses showed that most values of cross-sectional area (CA) and torsional resistance (J) of MTs 1-4 and the hallucal proximal phalanx (HPP) of the Mangaians are among those in the lower range of the Terry Collection sample. However, the bending strength ratios (Zy/Zx) of the Mangaian HPP are significantly greater than those of the Terry Collection. While characteristics such as forefoot shape variation between the sexes and among geographic populations cannot be ruled out as influential factors, cross-sectional properties of the hallucal proximal phalanges, but not the MTs, indicate terrain complexity in prehistoric populations.  相似文献   

8.
Mice raised in experimental habitats containing an artificial network of narrow “arboreal” supports frequently use hallucal grasps during locomotion. Therefore, mice in these experiments can be used to model a rudimentary form of arboreal locomotion in an animal without other morphological specializations for using a fine branch niche. This model would prove useful to better understand the origins of arboreal behaviors in mammals like primates. In this study, we examined if locomotion on these substrates influences the mid‐diaphyseal cross‐sectional geometry of mouse metatarsals. Thirty CD‐1/ICR mice were raised in either arboreal (composed of elevated narrow branches of varying orientation) or terrestrial (flat ramps and walkways that are stratified) habitats from weaning (21 days) to adulthood (≥4 months). After experiments, the hallucal metatarsal (Mt1) and third metatarsal (Mt3) for each individual were isolated and micro‐computed tomography (micro‐CT) scans were obtained to calculate mid‐shaft cross‐sectional area and polar section modulus. Arboreal mice had Mt1s that were significantly more robust. Mt3 cross sections were not significantly different between groups. The arboreal group also exhibited a significantly greater Mt1/Mt3 ratio for both robusticity measures. We conclude that the hallucal metatarsal exhibits significant phenotypic plasticity in response to arboreal treatment due to habitual locomotion that uses a rudimentary hallucal grasp. Our results support the hypothesis that early adaptive stages of fine branch arboreality should be accompanied by a slightly more robust hallux associated with the biomechanical demands of this niche. J. Morphol. 276:759–765, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Elizabeth Weiss 《HOMO》2012,63(1):1-11
Olduvai Hominin (OH) 8, a 1.76 million year old left foot skeleton, has osteophytic lipping on the metatarsal bases, which when compared to a modern sample, may help paleoanthropologists determine whether the foot bones represent an injured subadult or an osteoarthritic adult. This study compares the OH 8 lipping pattern to those of 140 individual Amerindians comprising four different age classes to determine whether the OH 8 lipping is likely to be age-related osteoarthritis. OH 8 metatarsal lipping followed a pattern similar to that determined in the comparative sample to be age-related osteoarthritis. Similarities include metatarsal base lipping that is frequently located on the dorsal surface, metatarsal base lipping that is more severe on the lateral metatarsals compared to the medial metatarsals, and the presence of a pseudojoint between metatarsal 1 and metatarsal 2. The chance of finding an individual with osteoarthritis lipping increases from 3.45% in the age group 18–22 years to 55% in individuals over 35 years. The chance of finding a pseudojoint increases from 1.32% in non-osteoarthritic individuals to 15.15% in individuals with osteoarthritis. Results from this study indicate that the OH 8 foot bones are most likely from an adult and more likely to belong to Paranthropus boisei, the skull of which was found in the same excavations with OH 8, than to the juvenile Homo habilis holotype.  相似文献   

10.
The appearance of a forefoot push-off mechanism in the hominin lineage has been difficult to identify, partially because researchers disagree over the use of the external skeletal morphology to differentiate metatarsophalangeal joint functional differences in extant great apes and humans. In this study, we approach the problem by quantifying properties of internal bone architecture that may reflect different loading patterns in metatarsophalangeal joints in humans and great apes. High-resolution x-ray computed tomography data were collected for first and second metatarsal heads of Homo sapiens (n = 26), Pan paniscus (n = 17), Pan troglodytes (n = 19), Gorilla gorilla (n = 16), and Pongo pygmaeus (n = 20). Trabecular bone fabric structure was analyzed in three regions of each metatarsal head. While bone volume fraction did not significantly differentiate human and great ape trabecular bone structure, human metatarsal heads generally show significantly more anisotropic trabecular bone architectures, especially in the dorsal regions compared to the corresponding areas of the great ape metatarsal heads. The differences in anisotropy between humans and great apes support the hypothesis that trabecular architecture in the dorsal regions of the human metatarsals are indicative of a forefoot habitually used for propulsion during gait. This study provides a potential route for predicting forefoot function and gait in fossil hominins from metatarsal head trabecular bone architecture.  相似文献   

11.
We present a hypothesis of tyrannosaurid foot function termed the "tensile keystone model," in which the triangular central metatarsal and elastic ligaments dynamically strengthened the foot. The tyrannosaurid arctometatarsus, in which the central metatarsal is proximally constricted, displays osteological correlates of distal intermetatarsal ligaments. The distal wedge-like imbrication of tyrannosaurid metatarsals indicates that rebounding ligaments drew the outer elements towards the middle digit early in the stance phase, unifying the arctometatarsus under high loadings. This suggests increased stability and resistance to dissociation and implies, but does not demonstrate, greater agility than in large theropods without an arctometatarsus.  相似文献   

12.
The caves at Klasies River contain abundant archaeological evidence relating to human evolution in the late Pleistocene of southern Africa. Along with Middle Stone Age artifacts, animal bones, and other food waste, there are hominin cranial fragments, mandibles with teeth, and a few postcranial remains. Three foot bones can now be added to this inventory. An adult first metatarsal is similar in size and discrete anatomical features to those from Holocene burials in the Cape Province. A complete and well-preserved second metatarsal is especially long and heavy at midshaft in comparison to all Holocene and more recent South African homologues. A large fifth metatarsal is highly distinctive in its morphology. In overall size, these pedal elements resemble specimens from late Pleistocene sites in western Asia, but there are some differences in proportions. The fossils support earlier suggestions concerning a relatively high level of sexual dimorphism in the African Middle Stone Age population. Squatting facets on the two lateral metatarsals appear to indicate a high frequency of kneeling among members of this group. The new postcranial material also underlines the fact that the morphology of particular skeletal elements of some of the 100,000-year-old Klasies River individuals falls outside the range of modern variation.  相似文献   

13.
Subtalar joint arthroereisis (SJA) has been introduced to control the hyperpronation in cases of flatfoot. The objective of this study is to evaluate the biomechanical consequence of SJA to restore the internal stress and load transfer to the intact state from the attenuated biomechanical condition induced by posterior tibial tendon dysfunction (PTTD). A three-dimensional finite element model of the foot and ankle complex was constructed based on clinical images of a healthy female (age 28 years, height 165 cm, body mass 54 kg). The boundary and loading condition during walking was acquired from the gait experiment of the model subject. Five sets of simulations (conditions) were completed: intact condition, mild PTTD, severe PTTD, mild PTTD with SJA, severe PTTD with SJA. The maximum von Mises stress of the metatarsal shafts and the load transfer along the midfoot during stance were analyzed. Generally, SJA deteriorated the joint force of the medial cuneonavicular and calcaneocuboid joints during late stance, while that of the metatarsocuneiform joints during early stance were over-corrected. Only the calcaneocuboid joint force at 45% stance demonstrated a trend of improvement. Besides, SJA exaggerated the increased stress of the metatarsals compared to the PTTD conditions, except that of the first metatarsal. Our study did not support the hypothesis that SJA can restore the internal load transfer and midfoot stress. SJA cannot compensate the salvage of midfoot stability attributed by PTTD and could be biomechanically insufficient to restore the biomechanical environment. Additional procedures such as orthotic intervention may be necessary.  相似文献   

14.
B Zipfel  R Kidd 《HOMO》2006,57(2):117-131
Two hominin metatarsals from Swartkrans, SKX 5017 and SK 1813, have been reported by Susman and Brain [1988. New first metatarsal (SKX 5017) from Swartkrans and the gait of Paranthropus robustus. Am. J. Phys. Anthropol. 79, 451-454] and Susman and de Ruiter [2004. New hominin first metatarsal (SK 1813) from Swartkrans. J. Hum. Evol. 47, 171-181]. They found these bones to have both primitive and derived traits indicating that, while being bipedal, these hominines had a unique toe-off mechanism. We have undertaken additional multivariate morphometric analyses, comparing the fossils to the first metatarsals of modern humans and extant apes. The largest proportion of discrimination lies in the different locomotor functions: apes on the one hand and the humans and fossils on the other. While the fossils have the closest affinity to humans, they have a unique biomechanical pattern suggesting a more facultative form of bipedalism. The implications of this are, while morphometric analyses do not necessarily directly capture the described primitive and derived traits, the associated functional pattern is held within the broader morphology of the bone.  相似文献   

15.
本文对山东枣庄市916人足放射片进行了足籽骨的观察与测量。发现每足有1-7个籽骨,其中二个者占77.8%,三个者占16.9%;籽骨位于跖骨头下方者占94.5%,位于趾间关节下方者占5.5%;各跖骨头籽骨出现率:Ⅰ占99.9%、Ⅱ占 2.2%、Ⅲ占0.3%、Ⅳ占0.5%、Ⅴ占6.4%;(足母)趾趾间关节籽骨占12.6%;二分及三分籽骨出现率占3.9%,明显低于欧美人。此外,本文认为籽骨是在先天籽骨原基基础上,加以后天运动的影响而形成。  相似文献   

16.
A foot specialized for grasping small branches with a divergent opposable hallux (hallucal grasping) represents a key adaptive complex characterizing almost all arboreal non-human euprimates. Evolution of such grasping extremities probably allowed members of a lineage leading to the common ancestor of modern primates to access resources available in a small-branch niche, including angiosperm products and insects. A better understanding of the mechanisms by which euprimates use their feet to grasp will help clarify the functional significance of morphological differences between the euprimate grasp complex and features representing specialized grasping in other distantly related groups (e.g., marsupials and carnivorans) and in closely related fossil taxa (e.g., plesiadapiforms). In particular, among specialized graspers euprimates are uniquely characterized by a large peroneal process on the base of the first metatarsal, but the functional significance of this trait is poorly understood. We tested the hypothesis that the large size of the peroneal process corresponds to the pull of the attaching peroneus longus muscle recruited to adduct the hallux during grasping. Using telemetered electromyography on three individuals of Varecia variegata and two of Eulemur rubriventer, we found that peroneus longus does not generally exhibit activity consistent with an important function in hallucal grasping. Instead, extrinsic digital flexor muscles and, sometimes, the intrinsic adductor hallucis are active in ways that indicate a function in grasping with the hallux. Peroneus longus helps evert the foot and resists its inversion. We conclude that the large peroneal tuberosity that characterizes the hallucal metatarsal of prosimian euprimates does not correlate to "powerful" grasping with a divergent hallux in general, and cannot specifically be strongly linked to vertical clinging and climbing on small-diameter supports. Thus, the functional significance of this hallmark, euprimate feature remains to be determined.  相似文献   

17.
Studies of directional asymmetry in the human upper limb have extensively examined bones of the arm, forearm, and hand, but have rarely considered the clavicle. Physiologically, the clavicle is an integrated element of the upper limb, transmitting loads to the axial skeleton and supporting the distal bones. However, clavicles develop in a manner that is unique among the bones of the upper limb. Previous studies have indicated that the clavicle has a right-biased asymmetry in diaphyseal breadth, as in humeri, radii, ulnae, and metacarpals, but unlike these other elements, a left-biased length asymmetry. Few studies have assessed how clavicular asymmetry relates to these other bones of the upper limb. Bilateral directional asymmetry of the clavicle is examined in relation to the humerus in a large, geographically diverse human sample, comparing lengths and diaphyseal breadths. Dimensions were converted into percentage directional (%DA) and absolute (%AA) asymmetries. Results indicate that humans have same-side %DA bias in the clavicles and humeri, and contralateral length %DA between these elements. Diaphyseal breadths in both clavicles and humeri are more asymmetric-both in direction and amount-than lengths. Differences in diaphyseal asymmetry are shown to relate to variation in physical activities among groups, but a relationship between activity and length asymmetry is not supported. This further supports previous research, which suggests different degrees of sensitivity to loading between diaphyseal breadths and maximum lengths of long bones. Differences in lateralized behavior and the potential effects of different bone development are examined as possible influences on the patterns observed among human groups.  相似文献   

18.
Olduvai Hominid 8 (OH 8), an articulating set of fossil hominin tarsal and metatarsal bones, is critical to interpretations of the evolution of hominin pedal morphology and bipedal locomotion. It has been suggested that OH 8 may represent the foot of a subadult and may be associated with the OH 7 mandible, the type specimen of Homo habilis. This assertion is based on the presence of what may be unfused distal metatarsal epiphyses. Accurately assessing the skeletal maturity of the OH 8 foot is important for interpretations of the functional morphology and locomotor behavior of Plio-Pleistocene hominins. In this study, we compare metatarsal fusion patterns and internal bone morphology of the lateral metatarsals among subadult hominines (85 modern humans, 48 Pan, and 25 Gorilla) to assess the likelihood that OH 8 belonged to either an adult or subadult hominin. Our results suggest that if OH 8 is indeed from a subadult, then it displays a metatarsal developmental pattern that is unobserved in our comparative sample. In OH 8, the fully fused base of the first metatarsal and the presence of trabecular bone at the distal ends of the second and third metatarsal shafts make it highly improbable that it belonged to a subadult, let alone a subadult that matches the developmental age of the OH 7 mandible. In total, the results of this study suggest that the OH 8 foot most likely belonged to an adult hominin.  相似文献   

19.
Determination of adult stature from metatarsal length   总被引:2,自引:0,他引:2  
The results of a study to determine the value of foot bones in reconstructing stature are presented. The data consist of length measurements taken on all ten metatarsals as well as on cadaver length from a sample of 130 adults of documented race, sex, stature, and, in most cases, age. Significant correlation coefficients (.58-.89) are shown between known stature and foot bone lengths. Simple and multiple regression equations computed from the length of each of these bones result in standard errors of estimated stature ranging from 40-76 mm. These errors are larger than those for stature calculated from complete long bones, but are approximately the same magnitude for stature calculated from metacarpals and fragmentary long bones. Given that metatarsals are more likely to be preserved unbroken than are long bones and given the ease with which they are accurately measured, the formulae presented here should prove useful in the study of historic and even prehistoric populations.  相似文献   

20.
The hamster was used as a model for investigating the effect of low, moderate, and high protein intake (12, 18, and 36% casein) on bone mineral content. Animals fed the low level of protein between 3 and 8 months of age had a reduction in the weight of all skeletal components measured, with the exception of the diaphyseal portion of the long bones. Diaphyseal weight and calcium remained significantly lower when expressed as a percentage of body weight. However, urinary calcium excretion was not lower than that of animals consuming an adequate protein intake. Ingesting a high protein diet resulted in a significant increase in urinary calcium excretion, and a reduced amount of both mineral and organic material in the diaphyses. We conclude that long-term consumption of a high protein ration led to the development of a mild osteoporotic condition in the hamster which was limited to the diaphyseal portions of the long bones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号