首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the expression of the prototypic secretory phospholipase A2 (sPLA2), group IIA (sPLA2-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA2 enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA2s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA2-V, and to a lesser extent that of sPLA2-IID, -IIE, and -IIF, were increased, whereas that of sPLA2-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA2-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA2-IIA inhibitor that turned out to inhibit sPLA2-IID, -IIE, -V and -X as well. In contrast, sPLA2-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA2s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

2.
3.
Although the expression of the prototypic secretory phospholipase A(2) (sPLA(2)), group IIA (sPLA(2)-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA(2) enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA(2)s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA(2)-V, and to a lesser extent that of sPLA(2)-IID, -IIE, and -IIF, were increased, whereas that of sPLA(2)-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA(2)-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA(2)-IIA inhibitor that turned out to inhibit sPLA(2)-IID, -IIE, -V and -X as well. In contrast, sPLA(2)-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA(2)s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

4.
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as “non-pancreatic”, “synovial”, “platelet-type”, “inflammatory”, and “bactericidal” sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.  相似文献   

5.
The secretory phospholipase A2 (sPLA2) family in mammals contains more than 10 enzymes. In this study, we examined by immunohistochemistry the localization of six sPLA2s (IIA, IID, IIE, IIF, V and X) in human heart, kidney, liver and stomach. In normal hearts, sPLA2-IIA was detected in coronary vascular smooth muscle cells (VSMC) and sPLA2-V in cardiomyocytes beneath the endocardium. In infarcted hearts, expression of these two enzymes was markedly increased in damaged cardiomyocytes, and expression of sPLA2-IID and-IIE, which was undetectable in normal hearts, was elevated in damaged cardiomyocytes and VSMC, respectively. In infarcted kidneys, sPLA2-IIA and-V were markedly induced in the uriniferous tubular epithelium. In livers affected by viral hepatitis, sPLA2-IIA and-V were expressed in hepatocytes with fatty degeneration. In the gastric glands exhibiting intestinal metaplasia, sPLA2-IIA was localized in the glandular base, sPLA2-IID and-V in the glandular body epithelium, sPLA2-IIE and-IIF in goblet cells in the foveolar epithelium, and sPLA2-X in both glandular body epithelial cells and foveolar epithelial goblet cells. In the gastric submucosal tissues, sPLA2-IIA and-IIE were located in VSMC and sPLA2-V was in the interstitial fibroblasts. In addition, sPLA2-IIA,-IIE,-IIF and-X were highly expressed in gastric signet ring cell carcinoma. Thus, individual sPLA2s exhibit unique cellular localizations in each tissue, suggesting their distinct roles in pathophysiology.  相似文献   

6.
Phospholipases A2 (PLA2) are enzymes that cleave the sn-2 bond of membrane phospholipids to yield free fatty acids and lysophospholipids. Secretory PLA2-III (sPLA2-III) has been suggested to be important for neuronal differentiation, growth and survival, and is highly expressed in the spinal cord. The aim of this study is to elucidate its expression and distribution in different regions of the adult rat CNS. Quantitative RT-PCR analyses showed high levels of sPLA2-III mRNA expression in the brainstem and spinal cord and low expression in the olfactory bulb. Western blot analyses showed high level of expression in the brainstem, spinal cord and cerebral neocortex. A dense band corresponding to the catalytically active, mature/cleaved form, and a faint band corresponding to the full length sPLA2-III were detected in post-mitochondrial supernatants, from different parts of the CNS. Subcellular fractionation of spinal cord homogenates showed that sPLA2-III protein is present in the ‘light membrane/cytosol’ fraction, but not the nucleus, synaptosomal membrane or synaptic vesicle-enriched fractions. sPLA2-III was immunolocalized to neurons in the cerebral neocortex, Purkinje neurons in the cerebellar cortex, periaqueductal gray, red nucleus, spinal trigeminal nucleus and dorsal horn of the spinal cord. Electron microscopy of the spinal cord and cerebral neocortex showed that sPLA2-III was localized in dendrites or dendritic spines, that formed asymmetrical synapses with unlabeled, putatively glutamatergic, axon terminals. The localization of mature/cleaved form of sPLA2-III in postsynaptic structures suggest a physiological role of the enzyme in neurotransmission or synaptic plasticity.  相似文献   

7.
Among the emerging phospholipase A2 (PLA2) superfamily, the secreted PLA2 (sPLA2) family consists of low-molecular-mass, Ca2+-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA2 enzymes have been identified in mammals. Individual sPLA2s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA2 enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA2 isoforms fueled by studies employing transgenic and knockout mice for several sPLA2s.  相似文献   

8.
9.
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. More than one third of the mammalian PLA2 enzymes belong to the secreted PLA2 (sPLA2) family, which consists of low molecular mass, Ca2+-requiring enzymes with a His–Asp catalytic dyad. Individual sPLA2 enzymes exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting their distinct biological roles. The past decade has met a new era of the sPLA2 research field toward deciphering their in vivo functions by developing several specific tools and methods. These include i) the production of transgenic and knockout mouse lines for several sPLA2s, ii) the development of specific analytical tools including the production of large amounts of recombinant sPLA2 proteins, and iii) applying mass spectrometry lipidomics to unveil their specific enzymatic properties occurring in vivo. It is now obvious that individual sPLA2s are involved in diverse biological events through lipid mediator-dependent and -independent processes, act redundantly or non-redundantly in the context of physiology and pathophysiology, and may represent potential drug targets or novel bioactive molecules in certain situations. In this review, we will highlight the newest understanding of the biological roles of sPLA2s in the past few years.  相似文献   

10.
The secreted phospholipases A2 (sPLA2s) are water-soluble enzymes that bind to the surface of both artificial and biological lipid bilayers and hydrolyze the membrane phospholipids. The tissue expression pattern of the human group IID secretory phospholipase A2 (hsPLA2-IID) suggests that the enzyme is involved in the regulation of the immune and inflammatory responses. With an aim to establish an expression system for the hsPLA2-IID in Escherichia coli, the DNA-coding sequence for hsPLA2-IID was subcloned into the vector pET3a, and expressed as inclusion bodies in E. coli (BL21). A protocol has been developed to refold the recombinant protein in the presence of guanidinium hydrochloride, using a size-exclusion chromatography matrix followed by dilution and dialysis to remove the excess denaturant. After purification by cation-exchange chromatography, far ultraviolet circular dichroism spectra of the recombinant hsPLA2-IID indicated protein secondary structure content similar to the homologous human group IIA secretory phospholipase A2. The refolded recombinant hsPLA2-IID demonstrated Ca2+-dependent hydrolytic activity, as measuring the release free fatty acid from phospholipid liposomes. This protein expression and purification system may be useful for site-directed mutagenesis experiments of the hsPLA2-IID which will advance our understanding of the structure–function relationship and biological effects of the protein.  相似文献   

11.
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca2+-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.  相似文献   

12.
Microbial secretory phospholipases A2 (sPLA2s) are among the last discovered and least known members of this functionally diverse family of enzymes. We analyzed here two sPLA2s, named sPlaA and sPlaB, of the filamentous ascomycete Aspergillus oryzae. sPlaA and sPlaB consist of 222 and 160 amino acids, respectively, and share the conserved Cys and catalytic His-Asp residues typical of microbial sPLA2s. Two sPLA2s differ in pH optimum, Ca2+ requirement and expression profile. The splaA mRNA was strongly upregulated in response to carbon starvation, oxidative stress and during conidiation, while splaB was constitutively expressed at low levels and was weakly upregulated by heat shock. Experiments with sPLA2 overexpressing strains demonstrated that two enzymes produce subtly different phospholipid composition variations and also differ in their subcellular localization: sPlaA is most abundant in hyphal tips and secreted to the medium, whereas sPlaB predominantly localizes to the ER-like intracellular compartment. Both sPLA2 overexpressing strains were defective in conidiation, which was more pronounced for sPlaB overexpressors. Although no major morphological abnormality was detected in either ΔsplaA or ΔsplaB mutants, hyphal growth of ΔsplaB, but not that of ΔsplaA, displayed increased sensitivity to H2O2 treatment. These data indicate that two A. oryzae sPLA2 enzymes display distinct, presumably non-redundant, physiological functions.  相似文献   

13.
14.
We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA2-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA2 activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA2 and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA2s. The recombinant sPLA2s were inhibited by sPLA2 inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA2 genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA2s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA2s showed the presence of the sPLA2 enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA2 genes that mediate nodulation reactions strongly supports our hypothesis that sPLA2s are central enzymes in insect cellular immune reactions.  相似文献   

15.
Following the finding that ammodytoxin (Atx), a neurotoxic secreted phospholipase A2 (sPLA2) in snake venom, binds specifically to protein disulfide isomerase (PDI) in vitro we show that these proteins also interact in living rat PC12 cells that are able to internalize this group IIA (GIIA) sPLA2. Atx and PDI co-localize in both differentiated and non-differentiated PC12 cells, as shown by fluorescence microscopy. Based on a model of the complex between Atx and yeast PDI (yPDI), a three-dimensional model of the complex between Atx and human PDI (hPDI) was constructed. The Atx binding site on hPDI is situated between domains b and b’. Atx interacts hPDI with an extensive area on its interfacial binding surface. The mammalian GIB, GIIA, GV and GX sPLA2s have the same fold as Atx. The first three sPLA2s have been detected intracellularly but not the last one. The models of their complexes with hPDI were constructed by replacement of Atx with the respective mammalian sPLA2 in the Atx—hPDI complex and molecular docking of the structures. According to the generated models, mammalian GIB, GIIA and GV sPLA2s form complexes with hPDI very similar to that with Atx. The contact area between GX sPLA2 and hPDI is however different from that of the other sPLA2s. Heterologous competition of Atx binding to hPDI with GV and GX sPLA2s confirmed the model-based expectation that GV sPLA2 was a more effective inhibitor than GX sPLA2, thus validating our model. The results suggest a role of hPDI in the (patho)physiology of some snake venom and mammalian sPLA2s by assisting the retrograde transport of these molecules from the cell surface. The sPLA2–hPDI model constitutes a valuable tool to facilitate further insights into this process and into the (patho)physiology of sPLA2s in relation to their action intracellularly.  相似文献   

16.
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.  相似文献   

17.
The ability of secretory phospholipase A2 (sPLA2) to hydrolyze cell membranes is highly dependent on the physical properties of the membrane. The effects of cholesterol on these properties have been characterized in artificial bilayers and found to alter sPLA2 activity significantly. It is hypothesized that the natural difference in cholesterol content between erythrocytes and leukocytes is in part responsible for their differing susceptibility to hydrolysis by sPLA2. To test this hypothesis, defined amounts of cholesterol were removed from erythrocyte membranes using methyl-β-cyclodextrin. Treatment of cells with methyl-β-cyclodextrin increased the hydrolysis rate and total substrate hydrolyzed by sPLA2. In general, this effect of cholesterol removal was more pronounced at higher temperatures. Comparison of the level of membrane order (assessed with the fluorescent probe laurdan) with hydrolysis rate revealed that sPLA2 activity was greatly enhanced upon significant reductions in lipid order. Additional treatment of the cells with calcium ionophore further enhanced the hydrolysis rate and altered the relationship with membrane order. These data demonstrated that interactions with sPLA2 observed in artificial bilayers apply to biological membranes. It is also proposed that the high level of cholesterol in erythrocyte membranes is a protective mechanism to guard against hydrolytic enzymes.  相似文献   

18.
19.
Type-IIA secreted phospholipase A2 (sPLA2-IIA) has been proposed to play a role in the development of inflammatory diseases. It has been shown to release arachidonic acid, the precursor of proinflammatory eicosanoids, to hydrolyze phospholipids of pulmonary surfactant, and to bind to specific receptors located on cell surface membranes. However, the most established biological role of sPLA2-IIA is related to its potent bactericidal property in particular toward Gram-positive bacteria. This enzyme is present in animal and human biological fluids at concentrations sufficient to kill bacteria. Human recombinant sPLA2-IIA is able to kill Gram-positive bacteria at concentrations as low as 1.1 ng/ml. This remarkable property is due to the unique preference of sPLA2-IIA for anionic phospholipids such as phosphatidylglycerol, the main phospholipid component of bacterial membranes. Much higher concentrations of sPLA2-IIA are required for its action on host cell membranes and surfactant both of which are mainly composed by phosphatidylcholine, a poor substrate for sPLA2-IIA. Transgenic mice over-expressing human sPLA2-IIA are resistant to infection by Staphylococcus aureus, Escherichia coli, and Bacillus anthracis, the etiological agent of anthrax. Conversely, certain bacteria, such as B. anthracis, E. coli and Bordetella pertussis are able to inhibit sPLA2-IIA expression by host cells, thus highlighting a mechanism by which these bacteria can subvert the host immune system. Intranasal instillation of recombinant sPLA2-IIA protects mice from mortality caused by pulmonary anthrax. Interestingly, this protective effect was obtained even with B. anthracis strains that down-regulate the expression of endogenous sPLA2-IIA, indicating that instilled sPLA2-IIA can overcome the subversive action of B. anthracis. We conclude that sPLA2-IIA is an efficient endogenous antibiotic of the host and can play a role in host defense against pathogenic bacteria. It can be used as a therapeutic agent in adjunct with current therapy to treat bacteria resistant to multiple antibiotics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号