首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceroid lipofuscinosis neuronal 5 (CLN5) is a member of a family of proteins that are linked to neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, known commonly as Batten disease, affects all ages and ethnicities and is currently incurable. The precise function of CLN5, like many of the NCL proteins, remains to be elucidated. In this study, we report the localization, molecular function, and interactome of Cln5, the CLN5 homolog in the social amoeba Dictyostelium discoideum. Residues that are glycosylated in human CLN5 are conserved in the Dictyostelium homolog as are residues that are mutated in patients with CLN5 disease. Dictyostelium Cln5 contains a putative signal peptide for secretion and we show that the protein is secreted during growth and starvation. We also reveal that both Dictyostelium Cln5 and human CLN5 are glycoside hydrolases, providing the first evidence in any system linking a molecular function to CLN5. Finally, immunoprecipitation coupled with mass spectrometry identified 61 proteins that interact with Cln5 in Dictyostelium. Of the 61 proteins, 67% localize to the extracellular space, 28% to intracellular vesicles, and 20% to lysosomes. A GO term enrichment analysis revealed that a majority of the interacting proteins are involved in metabolism, catabolism, proteolysis, and hydrolysis, and include other NCL-like proteins (e.g., Tpp1/Cln2, cathepsin D/Cln10, cathepsin F/Cln13) as well as proteins linked to Cln3 function in Dictyostelium (e.g., AprA, CfaD, CadA). In total, this work reveals a CLN5 homolog in Dictyostelium and further establishes this organism as a complementary model system for studying the functions of proteins linked to NCL in humans.  相似文献   

2.
3.
Mutations in CLN5 cause neuronal ceroid lipofuscinosis (NCL), a currently untreatable neurodegenerative disorder commonly known as Batten disease. Several genetic models have been generated to study the function of CLN5, but one limitation has been the lack of a homolog in lower eukaryotic model systems. Our previous work revealed a homolog of CLN5 in the social amoeba Dictyostelium discoideum. We used a Cln5-GFP fusion protein to show that the protein is secreted and functions as a glycoside hydrolase in Dictyostelium. Importantly, we also revealed this to be the molecular function of human CLN5. In this study, we generated an antibody against Cln5 to show that the endogenous protein is secreted during the early stages of Dictyostelium development. Like human CLN5, the Dictyostelium homolog is glycosylated and requires this post-translational modification for secretion. Cln5 secretion bypasses the Golgi complex, and instead, occurs via an unconventional pathway linked to autophagy. Interestingly, we observed co-localization of Cln5 and GFP-Cln3 as well as increased secretion of Cln5 and Cln5-GFP in cln3? cells. Loss of Cln5 causes defects in adhesion and chemotaxis, which intriguingly, has also been reported for Dictyostelium cells lacking Cln3. Finally, autofluorescence was detected in cln5? cells, which is consistent with observations in mammalian systems. Together, our data support a function for Cln5 during the early stages of multicellular development, provide further evidence for the molecular networking of NCL proteins, and provide insight into the mechanisms that may underlie CLN5 function in humans.  相似文献   

4.
The neuronal ceroid lipofuscinoses (NCLs) are a family of neurodegenerative diseases that affect people of all ages and ethnicities, yet many of the associated genes/proteins are not well characterized. Mutations in MFSD8 (major facilitator superfamily domain-containing 8) cause an infantile form of NCL referred to as CLN7 disease. In this study, we revealed the localization and binding partners of an ortholog of human MFSD8 (Mfsd8) in the social amoeba Dictyostelium discoideum. Putative lysosomal targeting motifs are conserved in Dictyostelium Mfsd8, as are several residues mutated in CLN7 disease patients. Mfsd8 tagged with GFP localizes to endocytic compartments, which includes acidic intracellular vesicles and late endosomes. We pulled-down GFP-Mfsd8 and used mass spectrometry to reveal the Mfsd8 interactome during Dictyostelium growth and starvation. Among the identified hits were the Dictyostelium ortholog of human cathepsin D (CtsD), as well as proteins linked to the functions of the CLN3 (Cln3) and CLN5 (Cln5) orthologs in Dictyostelium. To study the function of Mfsd8, we validated a publically available mfsd8 cell line (GWDI Project) and then used this knockout cell line to show that Mfsd8 influences the secretion of Cln5 and CtsD. This information is then integrated into an emerging model describing the molecular networking of NCL proteins in Dictyostelium. In total, this study identifies Dictyostelium as a new model system for studying CLN7 disease.  相似文献   

5.
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3? cells displayed defects in cytokinesis. The recovery of cln3? cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3? cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3? cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.  相似文献   

6.
The neuronal ceroid lipofuscinoses (NCL, Batten disease) are a group of inherited neurodegenerative diseases. Infantile neuronal ceroid lipofuscinosis (INCL, infantile Batten disease, or infantile CLN1 disease) is caused by a deficiency in the soluble lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1) and has the earliest onset and fastest progression of all the NCLs. Several therapeutic strategies including enzyme replacement, gene therapy, stem cell-mediated therapy, and small molecule drugs have resulted in minimal to modest improvements in the murine model of PPT1-deficiency. However, more recent studies using various combinations of these approaches have shown more promising results; in some instances more than doubling the lifespan of PPT1-deficient mice. These combination therapies that target different pathogenic mechanisms may offer the hope of treating this profoundly neurodegenerative disorder. Similar approaches may be useful when treating other forms of NCL caused by deficiencies in soluble lysosomal proteins. Different therapeutic targets will need to be identified and novel strategies developed in order to effectively treat forms of NCL caused by deficiencies in integral membrane proteins such as juvenile neuronal ceroid lipofuscinosis. Finally, the challenge with all of the NCLs will lie in early diagnosis, improving the efficacy of the treatments, and effectively translating them into the clinic. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.  相似文献   

7.
Neuronal ceroid lipofuscinoses (NCLs; also known collectively as Batten Disease) are a family of autosomal recessive lysosomal storage disorders. Mutations in as many as 13 genes give rise to ∼10 variants of NCL, all with overlapping clinical symptomatology including visual impairment, motor and cognitive dysfunction, seizures, and premature death. Mutations in CLN6 result in both a variant late infantile onset neuronal ceroid lipofuscinosis (vLINCL) as well as an adult-onset form of the disease called Type A Kufs. CLN6 is a non-glycosylated membrane protein of unknown function localized to the endoplasmic reticulum (ER). In this study, we perform a detailed characterization of a naturally occurring Cln6 mutant (Cln6nclf) mouse line to validate its utility for translational research. We demonstrate that this Cln6nclf mutation leads to deficits in motor coordination, vision, memory, and learning. Pathologically, we demonstrate loss of neurons within specific subregions and lamina of the cortex that correlate to behavioral phenotypes. As in other NCL models, this model displays selective loss of GABAergic interneuron sub-populations in the cortex and the hippocampus with profound, early-onset glial activation. Finally, we demonstrate a novel deficit in memory and learning, including a dramatic reduction in dendritic spine density in the cerebral cortex, which suggests a reduction in synaptic strength following disruption in CLN6. Together, these findings highlight the behavioral and pathological similarities between the Cln6nclf mouse model and human NCL patients, validating this model as a reliable format for screening potential therapeutics.  相似文献   

8.
9.
Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein–associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation plays a role in disulfide bond formation in a tertiary screen analyzing posttranslational modifications (PTMs). Collectively, these data highlight the role of PPT1 in mediating synapse functions, implicate molecular pathways in the etiology of NCL and other neurodegenerative diseases, and advance our basic understanding of the purpose of depalmitoylation.

Unbiased proteomics with acyl resin-assisted capture reveals diverse novel substrates of the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) at the synapse, with potential implications for the pathogenesis of neuronal ceroid lipofuscinosis, disulfide bond formation, synaptic adhesion and additional critical synaptic functions.  相似文献   

10.

Background

Neuronal ceroid lipofuscinoses type I and type II (NCL1 and NCL2) also known as Batten disease are the commonly observed neurodegenerative lysosomal storage disorder caused by mutations in the PPT1 and TPP1 genes respectively. Till date, nearly 76 mutations in PPT1 and approximately 140 mutations, including large deletion/duplications, in TPP1 genes have been reported in the literature. The present study includes 34 unrelated Indian patients (12 females and 22 males) having epilepsy, visual impairment, cerebral atrophy, and cerebellar atrophy.

Methods

The biochemical investigation involved measuring the palmitoyl protein thioesterase 1 and tripeptidy peptidase l enzyme activity from the leukocytes. Based on the biochemical analysis all patients were screened for variations in either PPT1 gene or TPP1 gene using bidirectional Sanger sequencing. In cases where Sanger sequencing results was uninformative Multiplex Ligation-dependent Probe Amplification technique was employed. The online tools performed the protein homology modeling and orthologous conservation of the novel variants.

Results

Out of 34 patients analyzed, the biochemical assay confirmed 12 patients with NCL1 and 22 patients with NCL2. Molecular analysis of PPT1 gene in NCL1 patients revealed three known mutations (p.Val181Met, p.Asn110Ser, and p.Trp186Ter) and four novel variants (p.Glu178Asnfs*13, p.Pro238Leu, p.Cys45Arg, and p.Val236Gly). In the case of NCL2 patients, the TPP1 gene analysis identified seven known mutations and eight novel variants. Overall these 15 variants comprised seven missense variants (p.Met345Leu, p.Arg339Trp, p.Arg339Gln, p.Arg206Cys, p.Asn286Ser, p.Arg152Ser, p.Tyr459Ser), four frameshift variants (p.Ser62Argfs*19, p.Ser153Profs*19, p.Phe230Serfs*28, p.Ile484Aspfs*7), three nonsense variants (p.Phe516*, p.Arg208*, p.Tyr157*) and one intronic variant (g.2023_2024insT). No large deletion/duplication was identified in three NCL1 patients where Sanger sequencing study was normal.

Conclusion

The given study reports 34 patients with Batten disease. In addition, the study contributes four novel variants to the spectrum of PPT1 gene mutations and eight novel variants to the TPP1 gene mutation data. The novel pathogenic variant p.Pro238Leu occurred most commonly in the NCL1 cohort while the occurrence of a known pathogenic mutation p.Arg206Cys dominated in the NCL2 cohort. This study provides an insight into the molecular pathology of NCL1 and NCL2 disease for Indian origin patients.
  相似文献   

11.

Background  

Neuronal ceroid lipofuscinoses (NCLs) comprise at least eight genetically characterized neurodegenerative disorders of childhood. Despite of genetic heterogeneity, the high similarity of clinical symptoms and pathology of different NCL disorders suggest cooperation between different NCL proteins and common mechanisms of pathogenesis. Here, we have studied molecular interactions between NCL proteins, concentrating specifically on the interactions of CLN5, the protein underlying the Finnish variant late infantile form of NCL (vLINCLFin).  相似文献   

12.
Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.  相似文献   

13.
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment – ceroid – in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.  相似文献   

14.
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA), could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.  相似文献   

15.
The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the endocytic pathway. cln3 cells displayed increased rates of proliferation and an associated reduction in the extracellular levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln3 cells was precocious and cln3 slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln3 cells suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation. Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln3 cells, strongly supports the use of this new model for JNCL research.  相似文献   

16.
Tripeptidyl peptidase I (TPP I) is the first mammalian representative of a family of pepstatin-insensitive serine-carboxyl proteases, or sedolisins. The enzyme acts in lysosomes, where it sequentially removes tripeptides from the unmodified N terminus of small, unstructured polypeptides. Naturally occurring mutations in TPP I underlie a neurodegenerative disorder of childhood, classic late infantile neuronal ceroid lipofuscinosis (CLN2). Generation of mature TPP I is associated with removal of a long prosegment of 176 amino acid residues from the zymogen. Here we investigated the inhibitory properties of TPP I prosegment expressed and isolated from Escherichia coli toward its cognate protease. We show that the TPP I prosegment is a potent, slow-binding inhibitor of its parent enzyme, with an overall inhibition constant in the low nanomolar range. We also demonstrate the protective effect of the prosegment on alkaline pH-induced inactivation of the enzyme. Interestingly, the inhibitory properties of TPP I prosegment with the introduced classic late infantile neuronal ceroid lipofuscinosis disease-associated mutation, G77R, significantly differed from those revealed by wild-type prosegment in both the mechanism of interaction and the inhibitory rate. This is the first characterization of the inhibitory action of the sedolisin prosegment.  相似文献   

17.
Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins   总被引:3,自引:0,他引:3  
Neuronal ceroid lipofucinoses (NCLs) are a group of severe neurodegenerative disorders characterized by accumulation of autofluorescent ceroid lipopigment in patients' cells. The different forms of NCL share many similar pathological features but result from mutations in different genes. The genes affected in NCLs encode both soluble and transmembrane proteins and are localized to ER or to the endosomes/lysosomes. Due to selective vulnerability of the central nervous system in the NCL disorders, the corresponding proteins are proposed to have important, tissue specific roles in the brain. The pathological similarities of the different NCLs have led not only to the grouping of these disorders but also to suggestion that the NCL proteins function in the same biological pathway. Despite extensive research, including the development of several model organisms for NCLs and establishment of high-throughput techniques, the precise biological function of many of the NCL proteins has remained elusive. The aim of this review is to summarize the current knowledge of the functions, or proposed functions, of the different NCL proteins.  相似文献   

18.
Tripeptidyl-peptidase 1 (TPP1) null or residual activity occurs in neuronal ceroid lipofuscinosis (NCL) with underlying TPP1/CLN2 mutations. A survey of 25 South American CLN2 affected individuals enabled the differentiation of two phenotypes: classical late-infantile and variant juvenile, each in approximately 50% of patients, with residual TPP1 activity occurring in approximately 32%. Each individual was assigned to one of three subgroups: (I) n = 11, null TPP1 activity in leukocytes; (II) n = 8, residual TPP1 activity of 0.60–15.85 nmol/h/mg (nr 110–476); (III) n = 6, activity not measured in leukocytes. Curvilinear bodies (CB) appeared in almost all studied CLN2 subjects; the only exceptions occurred in cases of subgroup II: two individuals had combined CBs/fingerprints (FPs), and one case had pure FPs. There were 15 mutations (4 first published in this paper, 3 previously observed in South America by our group, and 8 previously observed by others). In subgroup I, mutations were either missense or nonsense; in subgroups II and III, mutations prevailed at the non-conserved intronic site, c.887 − 10A>G (intron 7), and to a lesser extent at c.89 + 5G>C (intron 2), in heterozygous combinations. Grouping phenotypically and genetically known individuals on the basis of TPP1 activity supported the concept that residual enzyme activity underlies a protracted disease course. The prevalence of intronic mutations at non-conserved sites in subgroup II individuals indicates that some alternative splicing might allow some residual TPP1 activity.  相似文献   

19.
Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.  相似文献   

20.
Neuronal ceroid lipofuscinosis (NCL) is a neurodegenerative disease found in Border collie dogs, humans, and other animals. Disease gene studies in humans and animals provided candidates for the NCL gene in Border collies. A combination of linkage analysis and comparative genomics localized the gene to CFA22 in an area syntenic to HSA13q that contains the CLN5 gene responsible for the Finnish variant of human late infantile NCL. Sequencing of CLN5 revealed a nonsense mutation (Q206X) within exon 4 that correlated with NCL in Border collies. This truncation mutation should result in a protein product of a size similar to that of some mutations identified in human CLN5 and therefore the Border collie may make a good model for human NCL. A simple test was developed to enable screening of the Border collie population for carriers so the disease can be eliminated as a problem in the breed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号