首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   

2.
Assignment of the human glycogen debrancher gene to chromosome 1p21   总被引:3,自引:0,他引:3  
Glycogen debranching enzyme is a monomeric protein containing two independent catalytic activities of glycantransferase and glucosidase that are both required for glycogen degradation. Its deficiency causes type III glycogen storage disease. A majority of the patients with this disease have deficient enzyme activity in both liver and muscle (type IIIa) but approximately 15% of them lack enzyme activity only in the liver (type IIIb); however, the enzyme is a monomer and appears to be identical in all the tissues. The cDNA coding for the complete human muscle debranching enzyme has recently been isolated. Using the cDNA clones, the debrancher gene was localized to human chromosome 1 by somatic cell hybrid analysis. Regional assignment to chromosome band 1p21 was determined by in situ hybridization. Mapping of the debrancher gene to a single chromosome site is consistent with our hypotheses that a single gene encodes both liver and muscle debrancher protein.  相似文献   

3.
Glycogen debranching enzyme was partially purified from bovine brain using a substrate for measuring the amylo-1,6-glucosidase activity. Bovine cerebrum was homogenized, followed by cell-fractionation of the resulting homogenate. The enzyme activity was found mainly in the cytosolic fraction. The enzyme was purified 5,000-fold by ammonium sulfate precipitation, anion-exchange chromatography, gel-filtration, anion-exchange HPLC, and gel-permeation HPLC. The enzyme preparation had no alpha-glucosidase or alpha-amylase activities and degraded phosphorylase limit dextrin of glycogen with phosphorylase. The molecular weight of the enzyme was 190,000 and the optimal pH was 6.0. The brain enzyme differed from glycogen debranching enzyme of liver or muscle in its mode of action on dextrins with an alpha-1,6-glucosyl branch, indicating an amino acid sequence different from those of the latter two enzymes. It is likely that the enzyme is involved in the breakdown of brain glycogen in concert with phosphorylase as in the cases of liver and muscle, but that this proceeds in a somewhat different manner. The enzyme activity decreased in the presence of ATP, suggesting that the degradation of brain glycogen is controlled by the modification of the debranching enzyme activity as well as the phosphorylase.  相似文献   

4.
Single molecules of glycogen phosphorylase b exhibit images in the electron microscope which are similar in shape and dimension to those derived from X-ray crystallography. Phosphorylase alpha exhibits tetramers but shows dimers in the presence of glucose. Glycogen debranching enzyme appears as a monomer with an unusual crescent or shrimp-like shape, with occasional isologous aggregation to circular dimers. The longest dimension of the monomer is very similar to that of the phosphorylase dimer, 11.5 nm. Strong binding of the debranching enzyme to glycogen is readily visualized in the electron microscope. It is suggested that the distinctive shape of the debranching enzyme may be related to its catalytic function.  相似文献   

5.
6.
A glycogen-adipoyldihydrazide-Sepharose 4B column has been prepared for the analysis of glycogen-binding protein components of rat tissues. Glycogen-metabolizing enzymes; glycogen synthase, phosphorylase, branching enzyme, and debranching enzyme of skeletal muscle and liver have been adsorbed to the column, while those of brain showed very low affinities to it. On SDS gel electrophoresis of the glycogen-binding protein fractions, at least five and nine additional protein components have been detected in skeletal muscle and liver, respectively.  相似文献   

7.
The activity of glycogen synthase phosphatase in rat liver stems from the co-operation of two proteins, a cytosolic S-component and a glycogen-bound G-component. It is shown that both components possess synthase phosphatase activity. The G-component was partially purified from the enzyme-glycogen complex. Dissociative treatments, which increase the activity of phosphorylase phosphatase manyfold, substantially decrease the synthase phosphatase activity of the purified G-component. The specific inhibition of glycogen synthase phosphatase by phosphorylase a, originally observed in crude liver extracts, was investigated with purified liver synthase b and purified phosphorylase a. Synthase phosphatase is strongly inhibited, whether present in a dilute liver extract, in an isolated enzyme-glycogen complex, or as G-component purified therefrom. In contrast, the cytosolic S-component is insensitive to phosphorylase a. The activation of glycogen synthase in crude extracts of skeletal muscle is not affected by phosphorylase a from muscle or liver. Consequently we have studied the dephosphorylation of purified muscle glycogen synthase, previously phosphorylated with any of three protein kinases. Phosphorylase a strongly inhibits the dephosphorylation by the hepatic G-component, but not by the hepatic S-component or by a muscle extract. These observations show that the inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase.  相似文献   

8.
Summary Glycogen phosphorylase, glycogen alpha-4 UDP-glucosyl transferase, glycogen, and some enzymes were histochemically examined in rat skeletal muscles. Phosphorylase activity was abundantly demonstrated not only in large fibers of the white muscle, but also in small red fibers of soleus muscle and those in the deep fascicles of gastrocunemius and quadriceps femoris muscles. Small fibers with high phosphorylase activity did not always revealed high LDH activity.Native glycogen was abundant mostly in small fibers or in middlesized fibers. Neither glycogen synthetase, nor glycogenolytic enzyme activity was directly proportionate to native glycogen content.On Leave from Cancer Research Institute, Faculty of Medicine, Kyushu University, Fukuoka, Japan.  相似文献   

9.
A biochemical study was performed in a Lapland dog suspected of glycogen storage disease type II (acid α-glucosidase deficiency, Pompe's disease). Glycogen content was substantially elevated in heart and skeletal muscle but not in the liver. Severly reduced activities of acid α-glucosidase (EC 3.2.1.20) were found in heart, skeletal muscle, liver and cultured tongue fibroblasts. The deficiency was located in the glycoprotein fraction, which supported its lysosomal origin. The electrophorogram showed after acid incubation that the affected dog was missing the activity band, while after neutral incubation the pattern was similar to control. The obtained biochemical data are compared with the known data of the human pathology.  相似文献   

10.
Glycogen debranching enzyme (4-alpha-glucanotransferase amylo-1,6-glucosidase, EC 2.4.1.25 + 3.2.1.33) was purified 140-fold from dogfish muscle in a rapid, high-yield procedure that takes advantage of a strong binding of the enzyme to glycogen, and its quantitative adsorption to concanavalin A-Sepharose only when the polysaccharide is present. The final product was hrophoresis in the presence and absence of dodecyl sulfate. A molecular weight of 162,000 +/- 5000 was determined by sedimentation equilibrium analysis in good agreement with the value of 160,000 estimated by gel electrophoresis, but a low-sedimentation constant of 6.5 S suggests that the enzyme is asymmetric. The molecule appears to be made up of a single polypeptide chain with no evidence for multiple repeating sequences: it could not be dissociated into smaller fragments by dodecyl sulfate even after complete carboxymethylation; tryptic cleavage of the native protein yielded only two fragments of molecular weight 20,000 and 140,000 without loss of enzymatic activity. The amino acid composition of the enzyme is reported; no covalently bound phosphate or carbohydrate could be detected. All 32 sulfhydryl groups present were titrated with 5,5'-dithiobis(2-nitrobenzoic acid) under denaturing conditions; eight reacted readily in the native enzyme without loss of catalytic activity, while substitution of eight additional ones lowered the activity by 50%. Inactivation was greatly reduced by glycogen; the polysaccharide also influenced markedly the electrophoretic behavior of the enzyme and large filamentous aggregates were formed when solutions of both were mixed. Purified debranching enzyme releases 3 mumol of glucose min-1 mg-1 at 19 degrees C, pH 6.0, from a glycogen limit dextrin and one-tenth this amount when the native polysaccharide is used as substrate; glycogen is quantitatively degraded in the presence of phosphorylase. None of the usual sugar phosphates or nucleotide effectors of glycolysis affected enzymatic activity. No phosphorylation by either dogfish or rabbit skeletal muscle protein kinase or phosphorylase kinase could be demonstrated, nor any direct interaction with phosphorylase as measured by SH-group reactivity, enzymatic activity, or rate of phosphorylase b to a conversion. Purification of the 160,000 molecular weight M-line protein of skeletal muscle resulted in the quantitative removal of debranching enzyme, indicating that the two proteins are different.  相似文献   

11.
Phosphorylase kinase isolated from rabbit skeletal muscle contains a protein whose molecular mass as determined by polyacrylamide gel electrophoresis is 571 000 Da. The protein was found to possess a higher affinity for glycogen as compared to phosphorylase kinase and phosphorylase. The protein separated from kinase by chromatography on a DEAE-cellulose column produced during SDS electrophoresis one protein band corresponding to Mr of 95 200 Da. The above properties of the protein and the glycogen synthetase activity revealed in the presence of glucose-6-phosphate suggest that phosphorylase kinase preparations contain a hexameric form of glycogen synthetase.  相似文献   

12.
Glycogen disease type III (GSDIII), a rare incurable autosomal recessive disorder due to glycogen debranching enzyme deficiency, presents with liver, heart and skeletal muscle impairment, hepatomegaly and ketotic hypoglycemia. Muscle weakness usually worsens to fixed myopathy and cardiac involvement may present in about half of the patients during disease. Management relies on careful follow-up of symptoms and diet. No common agreement was reached on sugar restriction and treatment in adulthood.We administered two dietary regimens differing in their protein and carbohydrate content, high-protein (HPD) and high-protein/glucose-free (GFD), to our mouse model of GSDIII, starting at one month of age. Mice were monitored, either by histological, biochemical and molecular analysis and motor functional tests, until 10?months of age.GFD ameliorated muscle performance up to 10?months of age, while HPD showed little improvement only in young mice. In GFD mice, a decreased muscle glycogen content and fiber vacuolization was observed, even in aged animals indicating a protective role of proteins against skeletal muscle degeneration, at least in some districts. Hepatomegaly was reduced by about 20%. Moreover, the long-term administration of GFD did not worsen serum parameters even after eight months of high-protein diet. A decreased phosphofructokinase and pyruvate kinase activities and an increased expression of Krebs cycle and gluconeogenesis genes were seen in the liver of GFD fed mice.Our data show that the concurrent use of proteins and a strictly controlled glucose supply could reduce muscle wasting, and indicate a better metabolic control in mice with a glucose-free/high-protein diet.  相似文献   

13.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

14.
Glycogen synthase stimulated the autophosphorylation and autoactivation of phosphorylase kinase from rabbit skeletal muscle. This stimulation was additive to that by glycogen and the reaction was dependent on Ca2+. The effect by glycogen synthase was maximum within the activity ratio (the activity of enzyme without glucose-6-P divided by the activity with 10 mM glucose-6-P) of 0.3 and over 0.3 it was rather inhibitory. The results suggest that autophosphorylation of phosphorylase kinase in the presence of glycogen synthase on glycogen particles may be an important regulatory mechanism of glycogen metabolism in skeletal muscle.  相似文献   

15.
Deficiency of the glycogen debranching enzyme (gene, AGL) causes glycogen storage disease type III (GSD-III), an autosomal recessive disease affecting glycogen metabolism. Most GSD-III patients have AGL deficiency in both the liver and muscle (type IIIa), but some have it in the liver but not muscle (type IIIb). Cloning of human AGL cDNAs and determination of the genomic structure and mRNA isoforms of AGL have allowed for the study of GSD-III at the molecular level. In turn, the resulting information has greatly facilitated our understanding of the molecular basis of this storage disease with remarkable clinical and enzymatic variability. In this review, we summarize all 31 GSD-III mutations in the literature and discuss their clinical and laboratory implications. Most of the mutations are nonsense mutations caused by a nucleotide substitution or small insertion or deletion; only one is caused by a missense amino acid change. Some important genotype-phenotype correlation have emerged, in particular, that exon 3 mutations (17delAG and Q6X) are specifically associated with GSD-IIIb. Three other mutations have appeared to have some phenotype correlation. Specifically, the splice mutation IVS32-12A>G was found in GSD-III patients having mild clinical symptoms, while the mutations 3965delT and 4529insA are associated with a severe phenotype and early onset of clinical manifestations. A molecular diagnostic scheme has been proposed to diagnose GSD-III noninvasively. The characterization of AGL mutations in GSD-III patients has also helped the structure-function analysis of this bifunctional enzyme important for glycogen metabolism.  相似文献   

16.
A rapid method for purifying glycogen synthase a from rat liver was developed and the enzyme was tested as a substrate for nine different protein kinases, six of which were isolated from rat liver. The enzyme was phosphorylated on a 17-kDa CNBr fragment to approximately 1 phosphate/87-kDa subunit by phosphorylase b kinase from muscle or liver with a decrease in the activity ratio (-Glc-6-P/+Glc-6-P) from 0.95 to 0.6. Calmodulin-dependent glycogen synthase kinase from rabbit liver produced a similar phosphorylation pattern, but a smaller activity change. The catalytic subunit of beef heart cAMP-dependent protein kinase incorporated greater than 1 phosphate/subunit initially into a 17-kDa CNBr peptide and then into a 27-30-kDa CNBr peptide, with an activity ratio decrease to 0.5. Glycogen synthase kinases 3, 4, and 5 and casein kinase 1 were purified from rat liver. Glycogen synthase kinase 3 rapidly phosphorylated liver glycogen synthase to 1.5 phosphate/subunit with incorporation of phosphate into 3 CNBr peptides and a decrease in the activity ratio to 0.3. Glycogen synthase kinase 4 produced a pattern of phosphorylation and inactivation of liver synthase which was very similar to that caused by phosphorylase b kinase. Glycogen synthase kinase 5 incorporated 1 phosphate/subunit into a 24-kDa CNBr peptide, but did not alter the activity of the synthase. Casein kinase 1 phosphorylated and inactivated liver synthase with incorporation of phosphate into a 24-kDa CNBr peptide. This kinase and glycogen synthase kinase 4 were more active against muscle glycogen synthase. Calcium-phospholipid-dependent protein kinase from brain phosphorylated liver and muscle glycogen synthase on 17- and 27-kDa CNBr peptides, respectively. However, there was no change in the activity ratio of either enzyme. The following conclusions are drawn. 1) Liver glycogen synthase a is subject to multiple site phosphorylation. 2) Phosphorylation of some sites does not per se control activity of the enzyme under the assay conditions used. 3) Liver contains most, if not all, of the protein kinases active on glycogen synthase previously identified in skeletal muscle.  相似文献   

17.
1. Liver, kidney, brain, skeletal muscle, and cardiac muscle from one newborn and three adult long-snouted dolphins (Stenella plagiodon) were obtained for enzyme studies. 2. All of the dolphin tissues exhibited cytochrome oxidase, succinic dehydrogenase, and malic dehydrogenase activity. Considerable differences in the enzyme activities of the various tissues were noted, with cardiac muscle exhibiting the highest respiratory enzyme activity. The enzyme activities of dolphin tissues were lower than those of the corresponding rat tissues. 3. All of the dolphin tissues exhibited adenosine triphosphatase activity which was accelerated by magnesium and manganese but, in contrast to rat tissues, was only slightly activated by calcium. 4. Measurements of the distribution of acid-soluble phosphorus in dolphin tissues indicated that glycolysis in all of the tissues examined proceeded through the Emden-Meyerhof phosphorylation scheme. 5. The average glycogen content of dolphin skeletal muscle was 0.98 per cent as compared with 0.16 to 0.20 per cent for rat skeletal muscle. The high glycogen content of dolphin skeletal muscle indicates a ready source of substrate for glycolysis even during submergence when the blood supply may be differentially shunted to other organs. 6. Measurements of the organ weights of dolphins showed that the lungs occupy over three times and the liver one-half as much of the total body weight as do these organs in the rat. The heart and the thyroid gland of the dolphin are also larger in proportion to the total body weight than in the rat while the relative weights of the other tissues in the two species are about the same.  相似文献   

18.
Approximately 90% of cases of Lafora disease, a fatal teenage-onset progressive myoclonus epilepsy, are caused by mutations in either the EPM2A or the EPM2B genes that encode, respectively, a glycogen phosphatase called laforin and an E3 ubiquitin ligase called malin. Lafora disease is characterized by the formation of Lafora bodies, insoluble deposits containing poorly branched glycogen or polyglucosan, in many tissues including skeletal muscle, liver, and brain. Disruption of the Epm2b gene in mice resulted in viable animals that, by 3 months of age, accumulated Lafora bodies in the brain and to a lesser extent in heart and skeletal muscle. Analysis of muscle and brain of the Epm2b−/− mice by Western blotting indicated no effect on the levels of glycogen synthase, PTG (type 1 phosphatase-targeting subunit), or debranching enzyme, making it unlikely that these proteins are targeted for destruction by malin, as has been proposed. Total laforin protein was increased in the brain of Epm2b−/− mice and, most notably, was redistributed from the soluble, low speed supernatant to the insoluble low speed pellet, which now contained 90% of the total laforin. This result correlated with elevated insolubility of glycogen and glycogen synthase. Because up-regulation of laforin cannot explain Lafora body formation, we conclude that malin functions to maintain laforin associated with soluble glycogen and that its absence causes sequestration of laforin to an insoluble polysaccharide fraction where it is functionally inert.  相似文献   

19.
Phosphorylase activation reverses during prolonged contractile activity. Our first experiment was designed to determine whether this loss of ability to activate phosphorylase by stimulation of muscle contraction persists following exercise. Phosphorylase activation by stimulation of muscle contraction was markedly inhibited in rats 25 min after exhausting exercise. To evaluate the role of glycogen depletion, we accelerated glycogen utilization by nicotinic acid administration. A large difference in muscle glycogen depletion during exercise of the same duration did not influence the blunting of phosphorylase activation. Phosphorylase activation by stimulation of contraction was more severely inhibited following prolonged exercise than after a shorter bout of exercise under conditions that resulted in the same degree of glycogen depletion. A large difference in muscle glycogen repletion during 90 min of recovery was not associated with a significant difference in the ability of muscle stimulation to activate phosphorylase, which was still significantly blunted. Phosphorylase activation by epinephrine was also markedly inhibited in muscle 25 min after strenuous exercise but had recovered completely in glycogen-repleted muscle 90 min after exercise. These results provide evidence that an effect of exercise other than glycogen depletion is involved in causing the inhibition of phosphorylase activation; however, they do not rule out the possibility that glycogen depletion also plays a role in this process.  相似文献   

20.
L-type glycogen synthase. Tissue distribution and electrophoretic mobility   总被引:2,自引:0,他引:2  
We previously reported (Kaslow, H.R., and Lesikar, D.D.FEBS Lett. (1984) 172, 294-298) the generation of antisera against rat skeletal muscle glycogen synthase. Using immunoblot analysis, the antisera recognized the enzyme in crude extracts from rat skeletal muscle, heart, fat, kidney, and brain, but not liver. These results suggested that there are at least two isozymes of glycogen synthase, and that most tissues contain a form similar or identical to the skeletal muscle type, referred to as "M-type" glycogen synthase. We have now used an antiserum specific for the enzyme from liver, termed "L-type" glycogen synthase, to study its distribution and electrophoretic mobility. Immunoblot analysis using this antiserum indicates that L-type glycogen synthase is found in liver, but not skeletal muscle, heart, fat, kidney, or brain. In sodium dodecyl sulfate-polyacrylamide gels of crude liver extracts prepared with protease inhibitors, rat L-type synthase was detected with electrophoretic mobility Mapp = 85,000. In contrast, the M-type enzyme in crude skeletal muscle extracts with protease inhibitors was detected with Mapp = 86,000 and 89,000. During purification of L-type synthase, apparent proteolysis can generate forms with increased electrophoretic mobility (Mapp = 75,000), still recognized by the antiserum. These M-type and L-type antisera did not recognize a protein with Mapp greater than phosphorylase. The anti-rat L-type antisera recognized glycogen synthase in blots of crude extracts of rabbit liver, but with Mapp = 88,000, a value 3,000 greater than that found for the rat liver enzyme. The anti-rat M-type antisera failed to recognize the enzyme in blots of crude extracts of rabbit muscle. Thus, in both muscle and liver, the corresponding rat and rabbit enzymes are structurally different. Because the differences described above persist after resolving these proteins by denaturing sodium dodecyl sulfate electrophoresis, these differences reside in the structure of the proteins themselves, not in some factor bound to the protein in crude extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号