首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mitochondrial membrane uncoupling protein 3 (UCP3) is not only expressed in skeletal muscle and heart, but also in brown adipose tissue (BAT) alongside UCP1, which facilitates a proton leak to support non-shivering thermogenesis. In contrast to UCP1, the transport function and molecular mechanism of UCP3 regulation are poorly investigated, although it is generally agreed upon that UCP3, analogous to UCP1, transports protons, is activated by free fatty acids (FFAs) and is inhibited by purine nucleotides (PNs). Because the presence of two similar uncoupling proteins in BAT is surprising, we hypothesized that UCP1 and UCP3 are differently regulated, which may lead to differences in their functions. By combining atomic force microscopy and electrophysiological measurements of recombinant proteins reconstituted in planar bilayer membranes, we compared the level of protein activity with the bond lifetimes between UCPs and PNs. Our data revealed that, in contrast to UCP1, UCP3 can be fully inhibited by all PNs and IC50 increases with a decrease in PN-phosphorylation. Experiments with mutant proteins demonstrated that the conserved arginines in the PN-binding pocket are involved in the inhibition of UCP1 and UCP3 to different extents. Fatty acids compete with all PNs bound to UCP1, but only with ATP bound to UCP3. We identified phosphate as a novel inhibitor of UCP3 and UCP1, which acts independently of PNs. The differences in molecular mechanisms of the inhibition between the highly homologous transporters UCP1 and UCP3 indicate that UCP3 has adapted to fulfill a different role and possibly another transport function in BAT.  相似文献   

3.
Mitochondrial uncoupling in skeletal muscle has raised a major interest as a therapeutic target for treatment of obesity, insulin sensitivity, and age-related disease. These physiological effects could be demonstrated in several mouse models ectopically expressing uncoupling protein 1 (UCP1). Here, we investigated whether UCP1 expressed under the control of the human skeletal actin (HSA) promoter in mouse skeletal muscle can be regulated, and whether it affects mitochondrial superoxide production. We show that the skeletal muscle UCP1 can be fully inhibited by a purine nucleotide (GDP) and reactivated by fatty acids (palmitate). During mitochondrial resting state (State 4), mitochondrial superoxide production is about 76% lower in transgenic mice. We suggest that this reduction is due to uncoupling activity as the administration of GDP restores superoxide production to wildtype levels. Our study confirms native behaviour of UCP1 in skeletal muscle and demonstrates beneficial effects on prevention of mitochondrial reactive oxygen species production which may reduce age-related deleterious processes.  相似文献   

4.
5.
To test if mitochondrial uncoupling in white adipocytes is responsible for obesity resistance of the aP2-Ucp transgenic mice expressing ectopic uncoupling protein 1 (UCPI) in white fat, mitochondrial membrane potential (delta psi(m)) was estimated by flow cytometry in adipocytes isolated from gonadal fat. Ectopic UCP1 (approximately 0.8 mol UCP1/mol respiratory chain) decreased the delta psi(m) and rendered the potential sensitive to GDP and fatty acids. These ligands of UCP1 had no effect on delta psi(m) in white adipocytes from non-transgenic mice, suggesting that the function of endogenous UCP2 in adipocytes was not affected. The results support the hypothesis that mitochondrial uncoupling in white fat may prevent development of obesity.  相似文献   

6.
Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3   总被引:13,自引:0,他引:13  
Evidence for the physiological functions of UCP2 and UCP3 is critically reviewed. They do not mediate adaptive thermogenesis, but they may be significantly thermogenic under specific pharmacological conditions. There is strong evidence that the mild regulated uncoupling they cause attenuates mitochondrial ROS production, protects against cellular damage, and diminishes insulin secretion. Evidence that they export fatty acids physiologically is weak. UCP2 and UCP3 are important potential targets for treatment of aging, degenerative diseases, diabetes, and perhaps obesity.  相似文献   

7.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

8.
Telma C. Esteves 《BBA》2005,1709(1):35-44
The mitochondrial uncoupling proteins UCP2 and UCP3 may be important in attenuating mitochondrial production of reactive oxygen species, in insulin signalling (UCP2), and perhaps in thermogenesis and other processes. To understand their physiological roles, it is necessary to know what reactions they are able to catalyse. We critically examine the evidence for proton transport and anion transport by UCP2 and UCP3. There is good evidence that they increase mitochondrial proton conductance when activated by superoxide, reactive oxygen species derivatives such as hydroxynonenal, and other alkenals or their analogues. However, they do not catalyse proton leak in the absence of such acute activation. They can also catalyse export of fatty acid and other anions, although the relationship of anion transport to proton transport remains controversial.  相似文献   

9.
The aim of this study was to demonstrate the constitutive expression of mitochondrial uncoupling protein 1 (UCP 1) in pure thymocytes using laser scanning confocal microscopic imagery. To that end we probed thymocytes from UCP 1 knock-out and wild-type mice. Mitochondrial location in thymocytes was determined using Mitotracker Red and the nucleus was labelled using Hoescht stain. We demonstrate that all cells investigated were thymocytes as determined by a monoclonal antibody specific for the thymocyte surface marker Thy 1 (CD90) pre-coupled to a fluorescent labelled (Alexa 448, green). Using a primary peptide antibody specific to UCP 1, and secondary fluorescently labelled (Alexa 647, magenta) antibody, we were able to demonstrate that UCP 1 is associated with mitochondria in thymocytes from UCP 1 wild-type mice but not thymocytes from UCP1-knock-out mice. These are the first images demonstrating the presence of UCP 1 in thymocyte mitochondria, in situ, and the first to clearly demonstrate UCP 1 expression in cells other than brown adipocytes. We conclude that mouse thymocytes contain UCP 1 in their mitochondria.  相似文献   

10.
The aim of this study was to demonstrate the constitutive expression of mitochondrial uncoupling protein 1 (UCP 1) in pure thymocytes using laser scanning confocal microscopic imagery. To that end we probed thymocytes from UCP 1 knock-out and wild-type mice. Mitochondrial location in thymocytes was determined using Mitotracker Red and the nucleus was labelled using Hoescht stain. We demonstrate that all cells investigated were thymocytes as determined by a monoclonal antibody specific for the thymocyte surface marker Thy 1 (CD90) pre-coupled to a fluorescent labelled (Alexa 448, green). Using a primary peptide antibody specific to UCP 1, and secondary fluorescently labelled (Alexa 647, magenta) antibody, we were able to demonstrate that UCP 1 is associated with mitochondria in thymocytes from UCP 1 wild-type mice but not thymocytes from UCP1-knock-out mice. These are the first images demonstrating the presence of UCP 1 in thymocyte mitochondria, in situ, and the first to clearly demonstrate UCP 1 expression in cells other than brown adipocytes. We conclude that mouse thymocytes contain UCP 1 in their mitochondria.  相似文献   

11.
Mitochondrial uncoupling protein 1 (UCP1) mediates the thermogenic transport of protons through the inner mitochondrial membrane. This proton leak uncouples respiration from ATP synthesis. The current study assessed the possible contribution of UCP1 muscle gene transfer to impair mitochondrial respiration in a tissue lacking UCP1 gene expression. Rats received an intramuscular injection of plasmid pXC1 containing UCP1 cDNA in the right tibialis muscles, while left tibialis muscles were injected with empty plasmid as control. Ten days after DNA injection, mitochondria from tibialis anterior muscles were isolated and analyzed. UCP1 gene transfer resulted in protein expression as analyzed by inmunoblotting. Mitochondria isolated from UCP1-injected muscles showed a significant increase in state 2 and state 4 oxygen consumption rates and a decreased respiration control ratio in comparison to mitochondria from control muscles. Furthermore, UCP1-containing mitochondria had a lower membrane potential in those states (2 and 4) when compared with control mitochondria. Our results revealed that UCP1 muscle gene transfer is associated with an induced mitochondrial proton leak, which could contribute to increase energy expenditure.  相似文献   

12.
13.

Background  

Previously reported evidence indicates that pigs were independently domesticated in multiple places throughout the world. However, a detailed picture of the origin and dispersal of domestic pigs in East Asia has not yet been reported.  相似文献   

14.
RS-1提高CRISPR-Cas9系统介导的人乳铁蛋白基因敲入效率   总被引:1,自引:0,他引:1  
尝试利用CRISPR-Cas9系统敲除山羊基因组中β-乳球蛋白(BLG)基因,以实现在BLG基因座敲入人乳铁蛋白(h LF)基因,并进一步探讨了不同浓度RAD51蛋白激活剂(RS-1)对同源重组效率的影响。首先针对山羊BLG的第一外显子设计并构建了sg RNA和Cas9共表达载体p Cas9-sg BLG,将该载体转染至山羊耳成纤维细胞,利用PCR和T7EN1法验证了其基因组编辑活性;然后进一步构建了BLG基因打靶载体p BHA-h LF-NIE(包含NEO/EGFP);将该打靶载体与p Cas9-sg BLG载体共转染至山羊耳成纤维细胞,分别用0、5、10和20μmol/L RS-1处理细胞,分析了绿色荧光蛋白的表达效率;同时用800μg/m L G418对不同浓度RS-1处理后的细胞进行筛选,挑取EGFP阳性细胞克隆,进一步通过PCR和测序鉴定h LF定点敲入的阳性细胞克隆。结果显示:设计的sg RNA编辑山羊BLG位点的效率为25%-31%;报告基因的表达效率提示RS-1可以促进基因敲入效率的提高,其效率与RS-1浓度呈正相关,20μmol/L RS-1处理组的效率是对照组的3.5倍;利用G418筛选h LF敲入阳性细胞克隆后,当RS-1浓度为0-10μmol/L时,h LF敲入效率随着RS-1浓度增加而升高,在10μmol/L时阳性克隆率最高为32.61%,然而在20μmol/L时敲入阳性克隆率下降至22.22%,且衰老细胞克隆增多。以上结果表明,利用CRISPR-Cas9系统可以实现在山羊耳成纤维细胞中敲除BLG基因和敲入h LF基因,且适宜浓度的RS-1可以显著提升基因敲入效率,本试验为高效利用CRISPR-Cas9系统获得基因敲入的细胞提供了参考依据。  相似文献   

15.
Expression of brown adipose tissue (BAT) associated proteins like uncoupling protein 1 (UCP1) in inguinal WAT (iWAT) has been suggested to alter iWAT metabolism. The aim of this study was to investigate the role of interleukin-6 (IL-6) in exercise training and cold exposure-induced iWAT UCP1 expression. The effect of daily intraperitoneal injections of IL-6 (3 ng/g) in C57BL/6 mice for 7 days on iWAT UCP1 expression was examined. In addition, the expression of UCP1 in iWAT was determined in response to 3 days of cold exposure (4°C) and 5 weeks of exercise training in wild type (WT) and whole body IL-6 knockout (KO) mice. Repeated injections of IL-6 in C57BL/6 mice increased UCP1 mRNA but not UCP1 protein content in iWAT. Cold exposure increased iWAT UCP1 mRNA content similarly in IL-6 KO and WT mice, while exercise training increased iWAT UCP1 mRNA in WT mice but not in IL-6 KO mice. Additionally, a cold exposure-induced increase in iWAT UCP1 protein content was blunted in IL-6 KO mice, while UCP1 protein content in iWAT was lower in both untrained and exercise trained IL-6 KO mice than in WT mice. In conclusion, repeated daily increases in plasma IL-6 can increase iWAT UCP1 mRNA content and IL-6 is required for an exercise training-induced increase in iWAT UCP1 mRNA content. In addition IL-6 is required for a full induction of UCP1 protein expression in response to cold exposure and influences the UCP1 protein content iWAT of both untrained and exercise trained animals.  相似文献   

16.
17.
Uncoupling proteins (UCPs) are composed of three repeated domains of approximately 100 amino acids each. We have used chimeras of UCP1 and UCP2, and electron paramagnetic resonance (EPR), to investigate domain specific properties of these UCPs. Questions include: are the effects of nucleotide binding on proton transport solely mediated by amino acids in the third C-terminal domain, and are the amino acids in the first two domains involved in retinoic or fatty acid activation? We first confirmed that our reconstitution system produced UCP1 that exhibited known properties, such as activation by fatty acids and inhibition of proton transport by purine nucleotides. Our results confirm the observations reported for recombinant yeast that retinoic acid, but not fatty acids known to activate UCP1, activates proton transport by UCP2 and that this activation is insensitive to nucleotide inhibition. We constructed chimeras in which the last domains of UCP1 or UCP2 were switched and tested for activation by fatty acids or retinoic acid and inhibition by nucleotides. U1U2 is composed of mUCP1 (amino acids 1-198) and hUCP2 (amino acids 211-309). Fatty acids activated proton transport of U1U2 and GTP mediated inhibition. In the other chimeric construct U2U1, hUCP2 (amino acids 1-210) and mUCP1 (amino acids 199-307), retinoic acid still acted as an activator, but no inhibition was observed with GTP. Using EPR, a method well suited to the analysis of the structure of membrane proteins such as UCPs, we confirmed that UCP2 binds nucleotides. The EPR data show large structural changes in UCP1 and UCP2 on exposure to ATP, implying that a putative nucleotide-binding site is present on UCP2. EPR analysis also demonstrated changes in conformation of UCP1/UCP2 chimeras following exposure to purine nucleotides. These data demonstrate that a nucleotide-binding site is present in the C-terminal domain of UCP2. This domain was able to inhibit proton transport only when fused to the N-terminal part of UCP1 (chimera U1U2). Thus, residues involved in nucleotide inhibition of proton transport are located in the two first carrier motifs of UCP1. While these results are consistent with previously reported effects of the C-terminal domain on nucleotide binding, they also demonstrate that interactions with the N-terminal domains are necessary to inhibit proton transport. Finally, the results suggest that proteins such as UCP2 may transport protons even though they are not responsible for basal or cold-induced thermogenesis.  相似文献   

18.
19.
Brown adipose tissue (BAT) and brown in white (brite) adipose tissue, termed also beige adipose tissue, are major sites of mammalian nonshivering thermogenesis. Mitochondrial uncoupling protein 1 (UCP1), specific for these tissues, is the key factor for heat production. Recent molecular aspects of UCP1 structure provide support for the fatty acid cycling model of coupling, i.e. when UCP1 expels fatty acid anions in a uniport mode from the matrix, while uncoupling. Protonophoretic function is ensured by return of the protonated fatty acid to the matrix independent of UCP1. This mechanism is advantageous for mitochondrial uncoupling and compatible with heat production in a pro-thermogenic environment, such as BAT. It must still be verified whether posttranslational modification of UCP1, such as sulfenylation of Cys253, linked to redox activity, promotes UCP1 activity. BAT biogenesis and UCP1 expression, has also been linked to the pro-oxidant state of mitochondria, further endorsing a redox signalling link promoting an establishment of pro-thermogenic state. We discuss circumstances under which promotion of superoxide formation exceeds its attenuation by uncoupling in mitochondria and throughout point out areas of future research into UCP1 function.  相似文献   

20.
Mice having targeted inactivation of uncoupling protein 1 (UCP1) are cold sensitive but not obese (Enerb?ck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M-E, and Kozak LP. Nature 387: 90-94, 1997). Recently, we have shown that proton leak in brown adipose tissue (BAT) mitochondria from UCP1-deficient mice is insensitive to guanosine diphosphate (GDP), a well known inhibitor of UCP1 activity (Monemdjou S, Kozak LP, and Harper M-E. Am J Physiol Endocrinol Metab 276: E1073-E1082, 1999). Moreover, despite a fivefold increase of UCP2 mRNA in BAT of UCP1-deficient mice, we found no differences in the overall kinetics of this GDP-insensitive proton leak between UCP1-deficient mice and controls. Based on these findings, which show no adaptive increase in UCP1-independent leak in BAT, we hypothesized that adaptive thermogenesis may be occurring in other tissues of the UCP1-deficient mouse (e.g., skeletal muscle), thus allowing them to maintain their normal resting metabolic rate, feed efficiency, and adiposity. Here, we report on the overall kinetics of the mitochondrial proton leak, respiratory chain, and ATP turnover in skeletal muscle mitochondria from UCP1-deficient and heterozygous control mice. Over a range of mitochondrial protonmotive force (Deltap) values, leak-dependent oxygen consumption is higher in UCP1-deficient mice compared with controls. State 4 (maximal leak-dependent) respiration rates are also significantly higher in the mitochondria of mice deficient in UCP1, whereas state 4 Deltap is significantly lower. No significant differences in state 3 respiration rates or Deltap values were detected between the two groups. Thus the altered kinetics of the mitochondrial proton leak in skeletal muscle of UCP1-deficient mice indicate a thermogenic mechanism favoring the lean phenotype of the UCP1-deficient mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号