首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
p53 binds to cisplatin-damaged DNA   总被引:1,自引:0,他引:1  
We have previously shown that bacterially expressed p53 protein or p53 protein isolated from cis-diamminedichloroplatinum II (cisplatin)-damaged cells is capable of binding to double-stranded platinated DNA molecules lacking any p53 DNA binding sites. Here we report using various p53 mutants that two separate domains of p53 protein affect p53 binding to platinated DNA. Mutations within the central core of p53, the domain responsible for sequence-specific DNA binding activity, completely eliminated p53 binding to platinated DNA. Based on competition experiments p53 preferred binding to sequence-specific DNA molecules over platinated DNA molecules. However, p53 binding to platinated DNA molecules was significantly stronger than p53 interactions with DNA molecules lacking damage and a p53 consensus site. Finally, an antibody specific to the C-terminal domain of p53 (pAb421) which activates sequence-specific DNA binding activity inhibited p53 binding to platinated DNA. Taken together, these results suggest that in addition to binding to p53 DNA binding sites, p53 also interacts with cisplatin-damaged DNA molecules.  相似文献   

3.
A synthetic 22-mer peptide (peptide 46) derived from the p53 C-terminal domain can restore the growth suppressor function of mutant p53 proteins in human tumor cells (G. Selivanova et al., Nat. Med. 3:632-638, 1997). Here we demonstrate that peptide 46 binds mutant p53. Peptide 46 binding sites were found within both the core and C-terminal domains of p53. Lys residues within the peptide were critical for both p53 activation and core domain binding. The sequence-specific DNA binding of isolated tumor-derived mutant p53 core domains was restored by a C-terminal polypeptide. Our results indicate that C-terminal peptide binding to the core domain activates p53 through displacement of the negative regulatory C-terminal domain. Furthermore, stabilization of the core domain structure and/or establishment of novel DNA contacts may contribute to the reactivation of mutant p53. These findings should facilitate the design of p53-reactivating drugs for cancer therapy.  相似文献   

4.
5.
6.
The tumor suppressor protein, p53, selectively binds to supercoiled (sc) DNA lacking the specific p53 consensus binding sequence (p53CON). Using p53 deletion mutants, we have previously shown that the p53 C-terminal DNA-binding site (CTDBS) is critical for this binding. Here we studied supercoil-selective binding of bacterially expressed full-length p53 using modulation of activity of the p53 DNA-binding domains by oxidation of cysteine residues (to preclude binding within the p53 core domain) and/or by antibodies mapping to epitopes at the protein C-terminus (to block binding within the CTDBS). In the absence of antibody, reduced p53 preferentially bound scDNA lacking p53CON in the presence of 3 kb linear plasmid DNAs or 20 mer oligonucleotides, both containing and lacking the p53CON. Blocking the CTDBS with antibody caused reduced p53 to bind equally to sc and linear or relaxed circular DNA lacking p53CON, but with a high preference for the p53CON. The same immune complex of oxidized p53 failed to bind DNA, while oxidized p53 in the absence of antibody restored selective scDNA binding. Antibodies mapping outside the CTDBS did not prevent p53 supercoil-selective (SCS) binding. These data indicate that the CTDBS is primarily responsible for p53 SCS binding. In the absence of the SCS binding, p53 binds sc or linear (relaxed) DNA via the p53 core domain and exhibits strong sequence-specific binding. Our results support a hypothesis that alterations to DNA topology may be a component of the complex cellular regulatory mechanisms that control the switch between latent and active p53 following cellular stress.  相似文献   

7.
8.
Oncogenic mutations in the tumor suppressor protein p53 are found mainly in its DNA-binding core domain. Many of these mutants are thermodynamically unstable at body temperature. Here we show that these mutants also denature within minutes at 37 degrees C. The half-life (t(1/2)) of the unfolding of wild-type p53 core domain was 9 min. Hot spot mutants denatured more rapidly with increasing thermodynamic instability. The highly destabilized mutant I195T had a t(1/2) of less than 1 min. The wild-type p53-(94-360) construct, containing the core and tetramerization domains, was more stable, with t(1/2) = 37 min at 37 degrees C, similar to full-length p53. After unfolding, the denatured proteins aggregated, the rate increasing with higher concentrations of protein. A derivative of the p53-stabilizing peptide CDB3 significantly slowed down the unfolding rate of the p53 core domain. Drugs such as CDB3, which rescue the conformation of unstable mutants of p53, have to act during or immediately after biosynthesis. They should maintain the mutant protein in a folded conformation and prevent its aggregation, allowing it enough time to reach the nucleus and bind its sequence-specific target DNA or the p53 binding proteins that will stabilize it.  相似文献   

9.
Nichols NM  Matthews KS 《Biochemistry》2001,40(13):3847-3858
Full-length p53 protein purified from Escherichia coli in the unmodified, "latent" form was examined by several methods to correlate thermal stability of structure with functional DNA binding. Structure prediction algorithms indicate that the majority of beta-sheet structure occurs in the p53 core DNA binding domain. Circular dichroism spectra demonstrate that the intact protein is surprisingly stable with a midpoint for the irreversible unfolding transition at approximately 73 degrees C. Significant beta-sheet structural signal remains even to 100 degrees C. The persistent beta-sheet CD signal correlates with significant DNA binding (K(d) approximately nM range) to temperatures as high as 50 degrees C. These data confirm the ability of the DNA binding domain in the full-length "latent" protein to bind consensus dsDNA targets effectively in the absence of activators over a broad temperature range. In addition, we demonstrate that Ab1620 reactivity is not directly correlated with the functional activity of the full-length protein since loss of this epitope occurs at temperatures at which significant specific DNA binding can still be measured.  相似文献   

10.
The concept that the tumor suppressor p53 is a latent DNA-binding protein that must become activated for sequence-specific DNA binding recently has been challenged, although the "activation" phenomenon has been well established in in vitro DNA binding assays. Using electrophoretic mobility shift assays and fluorescence correlation spectroscopy, we analyzed the binding of "latent" and "activated" p53 to double-stranded DNA oligonucleotides containing or not containing a p53 consensus binding site (DNAspec or DNAunspec, respectively). In the absence of competitor DNA, latent p53 bound DNAspec and DNAunspec with high affinity in a sequence-independent manner. Activation of p53 by the addition of the C-terminal antibody PAb421 significantly decreased the binding affinity for DNAunspec and concomitantly increased the binding affinity for DNAspec. The net result of this dual effect is a significant difference in the affinity of activated p53 for DNAspec and DNAunspec, which explains the activation of p53. High affinity nonspecific DNA binding of latent p53 required both the p53 core domain and the p53 C terminus, whereas high affinity sequence-specific DNA binding of activated p53 was mediated by the p53 core domain alone. The data suggest that high affinity nonspecific DNA binding of latent and high affinity sequence-specific binding of activated p53 to double-stranded DNA differ in their requirement for the C terminus and involve different structural features of the core domain. Because high affinity nonspecific DNA binding of latent p53 is restricted to wild type p53, we propose that it relates to its tumor suppressor functions.  相似文献   

11.
One of the most important functions of the tumor suppressor p53 protein is its sequence-specific binding to DNA. Using a competition assay on agarose gels we found that the p53 consensus sequences in longer DNA fragments are better targets than the same sequences in shorter DNAs. Semi-quantitative evaluation of the competition experiments showed a correlation between the relative p53-DNA binding and the DNA lengths. Our results are consistent with a model of the p53-DNA interactions involving one-dimensional migration of the p53 protein along the DNA for distances of about 1000 bp while searching for its target sites. Positioning of the p53 target in the DNA fragment did not substantially affect the apparent p53-DNA binding, suggesting that p53 can slide along the DNA in a bi-directional manner. In contrast to full-length p53, the isolated core domain did not show any significant correlation between sequence-specific DNA binding and fragment length.  相似文献   

12.
Although p53 and p73 share considerable homology in their DNA-binding domains, there have been few studies examining their relative interactions with DNA as purified proteins. Comparing p53 and p73β proteins, our data show that zinc chelation by EDTA is significantly more detrimental to the ability of p73β than of p53 to bind DNA, most likely due to the greater effect that the loss of zinc has on the conformation of the DNA-binding domain of p73. Furthermore, prebinding to DNA strongly protects p73β but not p53 from chelation by EDTA suggesting that DNA renders the core domain of p73 less accessible to its environment. Further exploring these biochemical differences, a five-base sub-sequence was identified in the p53 consensus binding site that confers a greater DNA-binding stability on p73β than on full-length p53 in vitro. Surprisingly, p53 lacking its C-terminal non-specific DNA-binding domain (p53Δ30) demonstrates the same sequence discrimination as does p73β. In vivo, both p53 and p73β exhibit higher transactivation of a reporter with a binding site containing this sub-sequence, suggesting that lower in vitro dissociation translates to higher in vivo transactivation of sub-sequence-containing sites.  相似文献   

13.
14.
The tumor suppressor p53 has two DNA binding domains: a central sequence-specific domain and a C-terminal sequence-independent domain. Here, we show that binding of large but not small DNAs by the C terminus of p53 negatively regulates sequence-specific DNA binding by the central domain. Four previously described mechanisms for activation of specific DNA binding operate by blocking negative regulation. Deletion of the C terminus of p53 activates specific DNA binding only in the presence of large DNA. Three activator molecules (a small nucleic acid, a monoclonal antibody against the p53 C terminus, and a C-terminal peptide of p53) stimulate sequence-specific DNA binding only in the presence of both large DNA and p53 with an intact C terminus. Our findings argue that interactions of the C terminus of p53 with genomic DNA in vivo would prevent p53 binding to specific promoters and that cellular mechanisms to block C-terminal DNA binding would be required.  相似文献   

15.
16.
17.
Computational models reveal the structural origins of cooperativity in the association of the DNA binding domains (DBD) of p53 (and its two homologues p63 and p73) with consensus DNA. In agreement with experiments they show that cooperativity, as defined by sequential binding of monomers to DNA is strong for p53 and weak for homologues p63 and p73. Computations also suggest that cooperativity can arise from the dimerization of the DBD prior to binding the DNA for all 3 family members. Dimerization between the DBDs is driven by packing interactions originating in residues of helix H1 and loop L3, while DNA binding itself is dominated by local and global electrostatics. Calculations further suggest that low affinity oligomerization of the p53 DBD can precede the oligomerization of the tetramerization domain (TD). During synthesis of multiple chains on the polysome, this may increase fidelity by reducing the possibility of the highly hydrophobic TD from nonspecific aggregation. Mutations have been suggested to test these findings.  相似文献   

18.
19.
20.
We have used transmission electron microscopy to analyze the specificity and the extent of DNA bending upon binding of full-length wild-type human tumor suppressor protein p53 (p53) and the p53 core domain (p53CD) encoding amino acid residues 94-312, to linear double-stranded DNA bearing the consensus sequence 5'-AGACATGCCTAGACATGCCT-3' (p53CON). Both proteins interacted with high specificity and efficiency with the recognition sequence in the presence of 50 mM KCl at low temperature ( approximately 4 degrees C) while the p53CD also exhibits a strong and specific interaction at physiological temperature. Specific complex formation did not result in an apparent reduction of the DNA contour length. The interaction of p53 and the p53CD with p53CON induced a noticeable salt-dependent bending of the DNA axis. According to quantitative analysis with folded Gaussian distributions, the bending induced by p53 varied from approximately 40 degrees to 48 degrees upon decreasing of the KCl concentration from 50 mM to approximately 1 mM in the mounting buffer used for adsorption of the complexes to the carbon film surface. The p53CD bent DNA by 35-37 degrees for all salt concentrations used in the mounting buffer. The bending angle of the p53/DNA complex under low salt conditions showed a somewhat broader distribution (sigma approximately 39 degrees ) than at high salt concentration (sigma approximately 31 degrees ) or for p53CD (sigma approximately 24-27 degrees ). Together, these results demonstrate that the p53CD has a dominant role in complex formation and that the complexes formed both by p53 and p53CD under moderate salt conditions are similar. However, the dependence of the bending parameters on ambient conditions suggest that the segments flanking the p53CD contribute to complex formation as well. The problems associated with the analysis of bending angles in electron microscopy experiments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号