首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported a new metabolic competency for Escherichia coli, the ability to degrade and utilize fatty acids of various chain lengths as sole carbon and energy sources. This beta-oxidation pathway is distinct from the previously described aerobic fatty acid degradation pathway and requires enzymes encoded by two operons, yfcYX and ydiQRSTD. The yfcYX operon (renamed fadIJ) encodes enzymes required for hydration, oxidation, and thiolytic cleavage of the acyl chain. The ydiQRSTD operon encodes a putative acyl-CoA synthetase, ydiD (renamed fadK), as well as putative electron transport chain components. We report that FadK is as an acyl-CoA synthetase that has a preference for short chain length fatty acid substrates (<10 C atoms). The enzymatic mechanism of FadK is similar to other acyl-CoA synthetases in that it forms an acyl-AMP intermediate prior to the formation of the final acyl-CoA product. Expression of FadK is repressed during aerobic growth and is maximally expressed under anaerobic conditions in the presence of the terminal electron acceptor, fumarate.  相似文献   

2.
3.
Experiments were performed to assess the role of the fadL gene in Escherichia coli. These studies have revealed that this organism requires a functional fadL gene in order to (i) transport optimally the fatty acids C10 to C18:1 into the cell, (ii) optimally grow on and oxidize C10 to C18:1 fatty acids, and (iii) incorporate efficiently C12 to C18:1 fatty acids into its membrane phospholipids. A defect in the fadL gene does not prevent E. coli from optimally utilizing fatty acids with chain lengths less than 10 carbon atoms. These results suggest that the fadL gene governs a transport component(s) which is required for the optimal transport of fatty acids with chain lengths greater than 9 carbon atoms.  相似文献   

4.
The organization and function of the Bacillus subtilis YsiA regulon involved in fatty acid degradation were investigated. Northern and primer extension analyses indicated that this regulon comprises five operons, i.e. lcfA-ysiA-B-etfB-A, ykuF-G, yhfL, yusM-L-K-J, and ywjF-acdA-rpoE. YusJ and AcdA, YsiB and YusL, and YusK presumably encode acyl-CoA dehydrogenases, 3-hydroxyl-CoA dehydrogenase/enoyl-CoA hydratase complexes, and acetyl-CoA C-acyltransferase, respectively, which are directly involved in the fatty acid beta-oxidation cycle. In addition, LcfA and YhfL are likely to encode long chain acyl-CoA ligases. On gel retardation and footprinting analyses involving the purified YsiA protein, we identified cis-sequences for YsiA binding (YsiA boxes) in the promoter regions upstream of ysiA, ykuF, yusL, yhfL, and ywjF, the equilibrium dissociation constants (K(d)) for YsiA binding being 20, 21, 37, 43, and 65 nm, respectively. YsiA binding was specifically inhibited by long chain acyl-CoAs with 14-20 carbon atoms, acyl-CoAs with 18 carbon atoms being more effective; out of long chain acyl-CoAs tested, monounsaturated oleoyl-CoA, and branched chain 12-metyltetradecanoyl-CoA were most effective. These in vitro findings were supported by the in vivo observation that the knock-out of acyl-CoA dehydrogenation through yusJ, etfA, or etfB disruption resulted in YsiA inactivation, probably because of the accumulation of long chain acyl-CoAs in the cells. Furthermore, the disruption of yusL, yusK, yusJ, etfA, etfB, or ykuG affected the utilization of palmitic acid, a representative long chain fatty acid. Based on this work, ysiA, ysiB, ykuF, ykuG, yhfL, yusM, yusL, yusK, yusJ, and ywjF can be renamed fadR, fadB, fadH, fadG, lcfB, fadM, fadN, fadA, fadE, and fadF.  相似文献   

5.
6.
7.
8.
9.
Fatty acids with carbon chain lengths greater than 22 (VLCFA) have been detected in boar, ram, bull and human spermatozoa. Saturated and mono-unsaturated fatty acids were present in all spermatozoa but, except for human spermatozoa, polyenoic fatty acids were quantitatively the most important components. Marked differences in polyenoic fatty acid composition were observed. Whereas human spermatozoa contain predominantly di-, tri- and tetraenoic fatty acids with up to 32 carbon atoms, boar, ram and bull spermatozoa also contain pentaenoic and/or hexaenoic acids with up to 34 carbon atoms. Human and boar spermatozoa differ markedly from those of the ram and bull in that only n-6 series acids are present.  相似文献   

10.
11.
12.
13.
14.
15.
16.
A recA-lacZ protein fusion was constructed in vivo by using bacteriophage Mu dII301(Ap lac). The fusion contained the promoter and first 47 codons of the recA mutant, as determined by DNA sequence analysis. The fusion was cloned and used to construct a recA-lacZ operon fusion at the same site within the recA gene. These fusions were introduced into the Escherichia coli chromosome at the lambda attachment site either as complete or cryptic lambda prophages. Synthesis of beta-galactosidase from these fusions was inducible by UV radiation. As the UV dose was increased, induction became slower and persisted for a longer period of time. At low doses of UV radiation, more beta-galactosidase was produced in a uvrA mutant than in a wild-type strain; however, at high doses, no induced synthesis of beta-galactosidase occurred in a uvrA mutant. recA+ strains carrying either the protein or operon fusion on a multicopy plasmid showed reduced survival after UV irradiation. This UV sensitivity was not exhibited by strains containing a single copy of either fusion, however; hence, the fusions provide a reliable measure of recA expression.  相似文献   

17.
18.
19.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号