首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0-6.8 cm dorsal mantle length, 10.9-18.3 g) swimming in a flume at speeds of 3-27 cm s(-1). In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s(-1), when EMG activity was sporadic. At speeds greater than 15 cm s(-1), the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21-27 cm s(-1), when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.  相似文献   

2.
Electrophysiological experiments are helpful for students to understand the role of electrical activity in heart function. Papillary muscle, which belongs to the ventricle, offers the advantage of being easily studied using glass microelectrodes. In addition, there is commercially available software that simulates ventricular electrical activity and can help overcome some difficulties, such as voltage clamp experiments, which need expensive apparatus when used for studies on living preparations. Here, we present a class practical session that is taken by undergraduate students at our University. In the first part of this class, students record action potentials from papillary muscles with the use of glass microelectrodes, and they change extracellular conditions to study the ionic basis of the action potential. In the second part of the class, students simulate action potentials using the Oxsoft Heart model (v. 4.0) and model their previous experiments on papillary muscle to quantify the effects. In particular, the model is very helpful in promoting understanding of the effect that extracellular potassium has on cardiac action potential by simulating voltage clamp experiments. This twin approach of papillary muscle experiments and computer modeling leads to a good understanding of the functioning of the action potential and can help introduce discussion of some abnormal cardiac functioning.  相似文献   

3.
The NMDA class of glutamate receptors have the unique property of binding some agonists, including glutamate, for a very long period of time. One manifestation of this is that brief (1 ms) application of glutamate (1 mM) produces a slowly decaying current, the major component of which has a time constant of approximately 200 ms. Application of glutamate at low concentrations allows identification of groups ('superclusters') of openings in the data record that probably correspond to a single period during which one or more molecules of glutamate are bound to the receptor, i.e. a single activation of the channel. The length of such superclusters is long on average (74 ms); the longest component of the distribution has a duration of approximately 300 ms, and comprises about 25% of the area. However, aligning many superclusters to obtain an average current reveals that the decay is mainly fast; the major component has a time constant of around only 5 ms. It is shown that incorporation of a distribution of first latencies (from the time of the jump to the first opening) can explain at least part of this discrepancy.  相似文献   

4.
Within the target area (VL) used for the stereotactic treatment of parkinsonian tremor and spasmodic torticollis, electrical stimulation as well as recording of somatosensory evoked potential (SEP) was performed. The effects of stimulation in the target area are facilitation of muscle tone showing some degree of somatotopic distribution. The recorded SEPs indicate a projection of an afferent system (probably of muscle afferents) to the target area. We assume that the target area is a relay station involved in the control of muscle tone. The interruption of muscle afferents in combination with the correct somatotopic localization of the lesion is important for the therapeutic efficacy in parkinsonian tremor and spasmodic torticollis.  相似文献   

5.
A set-up for percutaneous electrical stimulation of the forearm extensor muscles and measurement of wrist extension force is described. The frequency-force relationship and pulse duration-force relationship are described together with an experimental protocol showing that brief electrical test stimulations do not produce fatigue. In another set of experiments carried out a few weeks later, the subjects performed handgrip contractions: protocol A at 25% of maximal voluntary contraction (MVC) continuously until exhaustion, protocol B at 25% MVC intermittent (contraction + relaxation = 10 + 2 s) until exhaustion, and protocol C at 25% MVC intermittent until half the time to exhaustion. In all experiments, brief electrical stimulations were used to test the degree of fatigue during and up to 24 h after the experiments. There were marked changes in the force during stimulation at 20 and 100 Hz and these changes did not correlate with the increase in intramuscular temperature. Low frequency fatigue persisted for at least 24 h after protocol A and 1 h after protocols B and C. The significance of this is discussed and it is suggested that low frequency fatigue could be used as a sensitive indicator of muscle dysfunction after low and medium intensity exercise.  相似文献   

6.
The opercularis muscle of Rana catesbeiana originates on the suprascapular cartilage of the shoulder girdle and inserts on the otic opercular element. It is part of the levator scapulae musculature and lies dorsomedial to the levator scapulae superior and inferior muscles. Bipolar electrode recordings from all three muscles show electrical activity linked to cyclical firing of the posterior intermandibularis muscle, an important ventilatory muscle. The opercularis muscle shows low amplitude, erratic signals when animals are sumerged. Upon emergence of the snout region, the opercularis muscle shows rhythmic low amplitude activity at twice the rate of buccal pumping. Lung ventilation is synchronized with this rhythm and at ventilation the opercularis muscle shows higher amplitude activity. Upon submergence, opercularis activity again shows low level activity with no rhythmic pattern. Opercularis muscle activity has a major low frequency component (about 30 Hz) that probably corresponds to activity of tonic muscle fibers. Higher frequency signals (about 200–250 Hz) comparable to those of the levator scapulae muscles are also present and probably represent activity of phasic muscle fibers. Activity of the opercularis muscle is correlated with conditions in which aerial respiration is possible, and this pattern of activity supports an opercularis role in aerial hearing and/or detection of substrate vibrations. As far as we know, this is the first report of electromyographic analysis of a vertebrate tonic muscle.  相似文献   

7.
The effects of alpha-adrenoceptor agonists and antagonists on contractions of the ABRM of M. edulis were examined. Naphazoline (10(-11)-10(-7)M) as well as octopamine potentiated both contractions in response to ACh and to repetitive electrical stimulation with brief pulses, while clonidine (10(-12)-10(-6)M), imidazole (10(-4)-10(-3)M) and tolazoline (10(-6)-10(-4)M) potentiated only the contraction in response to repetitive electrical stimulation. Potentiating actions of octopamine and naphazoline on ACh contraction were blocked by tolazoline but were little affected by clonidine and imidazole. Potentiating after-effect of repetitive electrical stimulation on subsequent ACh-contraction was not affected by clonidine and imidazole but was blocked by tolazoline. These results suggest that in the ABRM there are probably at least two classes of alpha-like receptors for octopamine; one may be on the muscle fibres and the other may be on the excitatory nerve terminals. Activation of the latter class of receptors may result in enhancement of ACh release from the terminals.  相似文献   

8.
The contractile response to bradykinin was studied in isolated longitudinal strips of detrusor muscle from rabbit urinary bladder. Strips responded slowly with contractions which were comparable in magnitude to acetylcholine but much greater than those produced by arachidonic acid. The bradykinin dose-response curve was very shallow (Clark's ratio = 10?5), with an ED50 of 0.2 μM. Bradykinin-induced contractions were unaffected by 0.4 μM atropine or 0.2 μM eserine. This suggests, in contrast to reports on rat bladder, that acetylcholine release does not contribute to the response. However, pretreatment with 10 μM naproxen antagonized bradykinin-induced contractions without affecting acetylcholine. It is concluded that, as in many other tissues, in the urinary bladder at least part of the response to bradykinin is mediated through prostaglandins. Bradykinin probably also has a direct action since higher concentrations are less susceptible to naproxen, and it produces a much greater contraction than the maximum achievable with arachidonic acid.  相似文献   

9.
The effect of increasing the osmotic strength of the extracellular solution on the fifament lattice of living frog sartorius and semitendinosus muscle has been studied using low-angle x-ray diffraction to measure the lattice spacing. As the extracellular osmotic strength is increased, the filament lattice shrinks like an osmometer until a minimal spacing between the thick filaments is reached. This minimal spacing varies from 20 to 31 nm, depending on the sarcomere length. Further increase in the osmotic strength produces little further shrinkage. The osmotic shrinkage curve indicates, for both muscles, an osmotically-inactive volume of approximately 30% of the volume in normal Ringer's solution. Shrinkage appears to be independent of temperature and the type of particle used to increase the osmotic strength (glucose, sucrose, small ions). The rate at which osmotic equilibruim is reached depends on muscle size, being slower for greater muscle diameters. Equilibrium spacings are approached exponentially with time constants ranging from 20 to 60 min. Independent of osmotic equilibrium, the lattice tends to shrink slowly by approximately 3% over the first few hours after dissection, probably because of a leakage of K+ ions from inside the muscle cells. This can be partly prevented by using an extracellular solution which contains a higher concentration of K+ ions or which is hypoosmotic. The volume of the muscle filament lattice (1.155d10(2) . S) is constant over a very wide range of sarcomere lengths, and is equal to approximately 3.6 x 10(6) nm3 for a range of amphibian muscle types.  相似文献   

10.
Fatigue is a major limitation to the clinical application of functional electrical stimulation. The activation pattern used during electrical stimulation affects force and fatigue. Identifying the activation pattern that produces the greatest force and least fatigue for each patient is, therefore, of great importance. Mathematical models that predict muscle forces and fatigue produced by a wide range of stimulation patterns would facilitate the search for optimal patterns. Previously, we developed a mathematical isometric force model that successfully identified the stimulation patterns that produced the greatest forces from healthy subjects under nonfatigue and fatigue conditions. The present study introduces a four-parameter fatigue model, coupled with the force model that predicts the fatigue induced by different stimulation patterns on different days during isometric contractions. This fatigue model accounted for 90% of the variability in forces produced by different fatigue tests. The predicted forces at the end of fatigue testing differed from those observed by only 9%. This model demonstrates the potential for predicting muscle fatigue in response to a wide range of stimulation patterns.  相似文献   

11.
Electrical muscle stimulation demonstrates potential for preventing muscle atrophy and restoring functional movement after spinal cord injury (SCI). Control systems used to optimize delivery of electrical stimulation protocols depend upon the algorithms generated using computational models of paralyzed muscle force output. The Hill–Huxley-type model, while being highly accurate, is also very complex, making it difficult for real-time implementation. In this paper, we propose a Wiener–Hammerstein system to model the paralyzed skeletal muscle under electrical stimulus conditions. The proposed model has substantial advantages in identification algorithm analysis and implementation including computational complexity and convergence, which enable it to be used in real-time model implementation. Experimental data sets from the soleus muscles of 14 subjects with SCI were collected and tested. The simulation results show that the proposed model outperforms the Hill–Huxley-type model not only in peak force prediction, but also in fitting performance for force output of each individual stimulation train.  相似文献   

12.
The airway smooth muscle from asthmatic airways produces increased amounts and an altered composition of extracellular matrix proteins. The extracellular matrix can in turn influence the phenotype and function of airway smooth muscle cells, affecting the biochemical, geometric, and mechanical properties of the airway wall. This review provides a brief overview of the current understanding of the biology associated with airway smooth muscle interactions with the extracellular matrix. We present future directions needed for the study of cellular and molecular mechanisms that determine the outcomes of extracellular matrix - airway smooth muscle interactions, and discuss their possible importance as determinants of airway function in asthma.  相似文献   

13.
W Fischer  G Pfitzer 《FEBS letters》1989,258(1):59-62
In intact smooth muscle strips from chicken gizzard, electrical stimulation and carbachol elicited brief, phasic contractions which were associated with a very rapid, transient phosphorylation of the 20 kDa myosin light chains. The phosphorylation transients reached their peak after 3 s and 6 s and preceded that of force. Phosphorylation was not significantly different from basal levels after 10 s and 30 s while force still amounted to 50% of the peak value. The rate of tension decline could be increased by cessation of stimulation or by addition of atropine, even at apparently basal phosphorylation levels suggesting a phosphorylation independent regulation.  相似文献   

14.
In this brief communication we provide an estimate of the part of the incident solar energy used for oxygen evolution as well as the time, in years, needed for the generation of the present amount of molecular oxygen in the biosphere by photosynthesis on land and in the ocean. We find this to be ≈3,000 yr. We also find that the ocean produces 22% more oxygen than the land surface.  相似文献   

15.
Under certain conditions only, isolated crayfish skeletal muscle fibers change in appearance, becoming grainy, darkening, and seemingly losing their striations. These changes result from development of large vesicles on both sides of the Z-line. The longitudinal sarcoplasmic reticulum remains unaffected. The vesicles are due to swelling of a transverse tubular system (TTS) which is presumably homologous with the T-system tubules of other muscle fibers. The vesiculations occur during efflux of water or on reducing external K or Cl, but only when KCl can leave the fiber. They never result from osmotic, ionic, or electrical changes when KCl cannot leave. Inward currents, applied through a KCl-filled intracellular cathode, also cause the vesiculations. These are not produced when the cathode is filled with K-propionate, nor by outward or longitudinal currents. Thus the transverse tubules swell only when Cl leaves the cell. Accordingly, their membrane is largely or exclusively anion-permselective. These findings also indicate that the TTS forms part of a current loop, connecting with the exterior of the fiber probably through radial tubules (RT) possessing membrane of low conductivity. Thus, part of the current flowing inward across the sarcolemma during activity can return to the exterior through the membrane of the TTS. The structure and properties of the latter offer the possibility for an efficient electrical mechanism to initiate excitation-contraction coupling.  相似文献   

16.
A STUDY OF THE INNERVATION OF THE TAENIA COLI   总被引:11,自引:2,他引:9       下载免费PDF全文
An electrophysiological and anatomical study of the guinea pig taenia coli is reported. Changing the membrane potential of single cells cannot modulate the rate of firing action potentials but does reveal electrical coupling between the cells during propagation. The amplitude of the junction potentials which occur during transmission from inhibitory nerves is unaffected in many cells during alteration of the membrane potential, indicating electrical coupling during transmission. The taenia coli is shown to consist of smooth muscle bundles which anastomose. There are tight junctions between the cells in the bundles, and these probably provide the pathway for the electrical coupling. The smooth muscle cells towards the serosal surface of the taenia coli are shown electrophysiologically to have an extensive intramural inhibitory innervation, but a sparse sympathetic inhibitory and cholinergic excitatory innervation. These results are in accordance with the distribution of these nerves as determined histochemically. As single axons are only rarely observed in the taenia coli, it is suggested that the only muscle cells which undergo permeability changes during transmission are those adjacent to varicosities in the nerve bundles. The remaining muscle cells then undergo potential changes during transmission because of electrical coupling through the tight junctions.  相似文献   

17.
During the process of mesoderm specification in Xenopus embryos, cells of the equatorial region are induced to form mesoderm in response to signals from the underlying endodermal cells. One mesodermal cell type resulting from this in vivo induction is skeletal muscle, which has a very specific and tightly regulated course of electrical and morphological development. Previously, electrical development could be analyzed only after neurulation, once myocytes could be morphologically identified. In vitro, activin triggers a cascade of events leading to the development of specific mesodermal tissues, including skeletal muscle; however, the precise role of activin in vivo is less clear. Much is now known about the mechanism and control of activin action, but very little is known about the subsequent time course of differentiation of activin-induced muscle. Such muscle is routinely identified by the presence of a small number of specific markers which, although they accurately confirm the presence of muscle, give little indication of the time course or quantitative aspects of muscle development. One of the most important functional aspects of muscle development is the acquisition of the complex electrical properties which allow it to function normally. Here we assess the ability of activin to drive in vitro the normal highly regulated sequence of electrical development in skeletal muscle. We find that in most, but not all, respects the normal time course of development of voltage-gated ion currents is well reproduced in activin-induced muscle. This characterization strengthens the case for activin as an agent capable of inducing the detailed developmental program of muscle and now allows for analysis of the regulation of electrical development prior to neurulation.  相似文献   

18.
The anterior extrinsic protractors in the buccal mass of Aplysia are symmetrical sheets of branching bundles of muscle fibers which form an electrical syncytium. The addition of potassium or cholinergic, adrenergic, and glutaminergic agonists to the sea water bathing medium produces contracture of the muscle. Strychnine and cholinergic or adrenergic antagonists all block contractures produced by cholinergic and adrenergic agonists but not those produced by potassium or glutamate. Iontophoretic application through microelectrodes of acetylcholine or dopamine anywhere on the muscle surface produced a graded depolarization of the membrane. By contrast, glutamate produces depolarization only at discrete membrane sites. Endogeneous contractions often appeared spontaneously or could be induced by drug exposure. ATP inhibits endogeneous contractions.  相似文献   

19.
During volitional muscle activation, motor units often fire with varying discharge patterns that include brief, high-frequency bursts of activity. These variations in the activation rate allow the central nervous system to precisely control the forces produced by the muscle. The present study explores how varying the instantaneous frequency of stimulation pulses within a train affects nonisometric muscle performance. The peak excursion produced in response to each stimulation train was considered as the primary measure of muscle performance. The results showed that at each frequency tested between 10 and 50 Hz, variable-frequency trains that took advantage of the catchlike property of skeletal muscle produced greater excursions than constant-frequency trains. In addition, variable-frequency trains that could achieve targeted trajectories with fewer pulses than constant-frequency trains were identified. These findings suggest that similar to voluntary muscle activation patterns, varying the instantaneous frequency within a train of pulses can be used to improve muscle performance during functional electrical stimulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号