共查询到20条相似文献,搜索用时 0 毫秒
1.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc. 相似文献
2.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda. 相似文献
3.
The maxillary organ of Scutigera coleoptrata was investigated using light microscopy, electron microscopy, and maceration techniques. Additionally, we compared the maxillary organ of S. coleoptrata with those of two other notostigmophoran centipedes, Parascutigera festiva and Allothereua maculata, using SEM. The maxillary organ is located inside the posterior coxal lobes of the first maxillae and extends posteriorly as sac-like pouches. The narrow epidermis of the maxillae is differentiated to form the epithelium of the maxillary organ. Two types of epithelia are distinguishable: a simple cuboidal epithelium of different height and differentiation (types I, II, IV) and a pseudostratified columnar epithelium (type III). These epithelia are covered by a highly specialized cuticle. The pseudostratified epithelium is the most prominent feature of the maxillary organ. It is covered with hundreds of setae, protruding deep into the maxillary organ. Two different types of setae can be distinguished, filiform and fusiform. The maxillary organ communicates with the oral cavity, the maxillary organ gland, the maxillary nephridium, and with a large number of epidermal glands that secrete into the maxillary organ. Epithelium III allows the extension of the maxillary organ when its pouches are filled with secretion. The maxillary organ is a complex multifunctional organ. The organ probably stores excretion from the maxillary nephridia and secretory fluid from the maxillary organ gland and other epidermal glands. The fluid is primarily required as preening fluid. The ammonia of the excretory fluid is thought to evaporate via the setae and the wide opening of the maxillary organ. It is likely that parts of the fluid can be reabsorbed by the animal via the oral cavity. 相似文献
4.
Gero Hilken Gregory D. Edgecombe Carsten H.G. Müller Andy Sombke Christian S. Wirkner J?rg Rosenberg 《ZooKeys》2015,(510):233-242
Notostigmophora (Scutigeromorpha) exhibit a special tracheal system compared to other Chilopoda. The unpaired spiracles are localized medially on the long tergites and open into a wide atrium from which hundreds of tracheal tubules originate and extend into the pericardial sinus. Previous investigators reported that the tracheal tubules float freely in the hemolymph. However, here we show for the first time that the tracheal tubules are anchored to a part of the pericardial septum. Another novel finding is this part of the pericardial septum is structured as an aggregated gland on the basis of its specialized epithelium being formed by hundreds of oligocellular glands. It remains unclear whether the pericardial septum has a differently structure in areas that lack a connection with tracheal tubules. The tracheal tubules come into direct contact with the canal cells of the glands that presumably secrete mucous substances covering the entire luminal cuticle of the tracheal tubules. Connections between tracheae and glands have not been observed in any other arthropods. 相似文献
5.
We describe the ultrastructural organization of the anal organs of Craterostigmus tasmanianus, which are located on the ventral side of the bivalvular anal capsule. Each part of the capsule bears four pore fields with several anal pores. The pores lead into a pore canal, which is surrounded by the single-layered epithelium of the anal organs. Each anal organ is composed of four different cell types: transporting cells of the main epithelium, junctional cells, isolated epidermal glands, and the cells forming the pore canal. The transporting cells exhibit infoldings of the outer cell membranes, forming a basal labyrinth and a poorly developed apical complex. The cells are covered by a specialized cuticle with a widened subcuticular layer. Only the cuticle of the main epithelium is covered by a mucous layer, secreted by the epidermal glands. The ultrastructural organization of the anal organ is comparable to the coxal and anal organs of other pleurostigmophoran Chilopoda. It is likely that the coxal and anal organs of the Pleurostigmophora are homologous, due to their identical ultrastructural organization. Differences concerning the location on the trunk of Pleurostigmophora are not sufficient to reject a hypothesis of homology. Anal organs are found not only in Craterostigmomorpha, but also in most adult Geophilomorpha, and in larvae and most adults of Lithobiomorpha. The anal organs of C. tasmanianus are thought to play an important role in the uptake of atmospheric water. J. Morphol. 相似文献
6.
The hemocytes of Scutigera coleoptrata were investigated by light and electron microscopy. Four types of hemocytes were identified: prohemocytes, plasmatocytes, granulocytes, and spherulocytes. Only granulocytes could be distinguished from the three other types by May-Grünwald staining, as this is the only hemocyte type demonstrating an eosinophilic reaction. Shape and size give further indications for distinguishing the cell types. In addition, differentiation is possible on the basis of their ultrastructure. However, only a combination of all three methods (staining and light and electron microscopy) allows clear separation of the cell types. As transitional stages between the cell types occur in S. coleoptrata, it is likely that prohemocytes, plasmatocytes, and granulocytes are ontogenetic stages of a single cell lineage. Special cell components and their possible functions are described. Plasmatocytes exocytose tubular structures that probably play a role in coagulation processes. These tubular structures develop in the grana of plasmatocytes. Also, a special arrangement of microtubules and microfilaments was demonstrated. For the first time interactions between hemocytes and tracheae are documented within the Chilopoda. It is assumed that the hemocytes meet their oxygen requirements directly from the tracheae. Phylogenetic implications of the results are discussed. 相似文献
7.
Myriapods represent an arthropod lineage, that originating from a marine arthropod ancestor most likely conquered land independently from hexapods and crustaceans. Establishing aerial olfaction during a transition from the ocean to land requires molecules to be detected in gas phase instead of in water solution. Considering that the olfactory sense of myriapods has evolved independently from that in hexapods and crustaceans, the question arises if and how myriapods have solved the tasks of odor detection and odor information processing in air. Comparative studies between arthropod taxa that independently have established a terrestrial life style provide a powerful means of investigating the evolution of chemosensory adaptations in this environment and to understand how the arthropod nervous system evolved in response to new environmental and ecological challenges. In general, the neuroethology of myriapods and the architecture of their central nervous systems are insufficiently understood. In a set of experiments with the centipede Scutigera coleoptrata, we analyzed the central olfactory pathway with serial semi-thin sectioning combined with 3-dimensional reconstruction, antennal backfilling with neuronal tracers, and immunofluorescence combined with confocal laser-scanning microscopy. Furthermore, we conducted behavioral experiments to find out if these animals react to airborne stimuli. Our results show that the primary olfactory and mechanosensory centers are well developed in these organisms but that the shape of the olfactory neuropils in S. coleoptrata is strikingly different when compared with those of hexapods and malacostracan crustaceans. Nevertheless, the presence of distinct neuropils for chemosensory and mechanosensory qualities in S. coleoptrata, malacostracan Crustacea, and Hexapoda could indicate a common architectural principle within the Mandibulata. Furthermore, behavioral experiments indicate that S. coleoptrata is able to perceive airborne stimuli, both from live prey and from a chemical extract of the prey. These results are in line with the morphological findings concerning the well-developed olfactory centers in the deutocerebrum of this species. 相似文献
8.
M. DESCAMPS 《Invertebrate reproduction & development.》2013,57(3):205-208
The role of the ventral nerve cord has been investigated in Lithobius forficatus L., using ganglionic destructions, ganglionic implantations and ganglionic electrostimulations. It seems that a stimulating principle is present in the sub-oesophageal ganglion. Its action is not so important as that of the pars intercerebralis. 相似文献
9.
《Arthropod Structure & Development》2014,43(1):43-61
In Chilopoda, solitary epidermal glands are composed of a couple of cells only. These glands are highly abundant on the entire body surface and are distributed throughout the single-layered epidermis. Some authors provided more or less comprehensive observations on the structure of epidermal glands of specific chilopod taxa. However, no information is hitherto available on the ultrastructural diversity of these glands. Furthermore, potential homologies of these chilopod epidermal glands and of their characteristic cellular components remain unknown. Based on our results, we are now able to distinguish two types of epidermal glands in Chilopoda that can be clearly distinguished by their structure and the course of their conducting canal: recto-canal epidermal glands (rceg) and flexo-canal epidermal glands (fceg). In the present paper, we focus on the rceg. We examined the ultrastructural organization of these glands in the head region and on the anterior trunk segments of various representatives of the five extant chilopod orders by light- and electron-microscopy. According to our terminology, rceg consist of up to five different cell types including: a) distal canal cells, b) proximal canal cells, c) intermediary cells, and d) two different types of secretory cells. Intermediary and canal cells form a common conducting canal. The rceg may taxon-specifically differ in relative size and subcellular architecture, but all have the following features in common: 1) a wide distribution on various body regions among all five chilopod subtaxa, 2) the straight, broad and locally dilated conducting canal surrounded by closely packed microvilli or microvilliform infoldings around the apex of the canal cell(s), and 3) the tendency to aggregate to form compound glandular organs of massive size and complexity. Tricellular glandular units established by three different cell types are observed in Scutigeromorpha and Geophilomorpha, whereas four cell types constitute rceg in Lithobiomorpha and Craterostigmomorpha. Five different cell types per glandular unit are found only in Scolopendromorpha. The partial cuticularization of the lower part of the conducting canal formed by the intermediary cell, as found in Chilopoda, differs from the pattern described for equivalent euarthropod epidermal glands, as for instance in Hexapoda. Their wide distribution in Chilopoda and Progoneata makes it likely that tricellular rceg were at least present in the last common ancestor of the Myriapoda. Concerning Chilopoda, the evolution of highly diverse rceg is well explained on the basis of the Pleurostigmophora concept. Glands of the recto-canal type are also found in other arthropods. The paper discusses cases where homology of rceg and also fceg may be assumed beyond Myriapoda and briefly evaluates the potentials and the still-to-be-solved issues prior to use them as an additional character system to reconstruct the phylogeny of the Euarthropoda. 相似文献
10.
Abstract. We determined standard metabolic rate at 25°C in forty-eight species of millipede from southern Africa and compared these data with confident measures of standard metabolic rate previously published for other arthropod groups.Metabolic rate in millipedes was not significantly different from that in beetles, ants or spiders once body mass effects had been accounted for, but was significantly higher than that in ticks.The exponent for the mass scaling of metabolic rate did not vary significantly between the five arthropod orders.Our best estimate for the relationship between standard metabolic rate (μl O2 h-1 ) and body mass (mg) in non-tick arthropods was 0.86 mass0.73 . 相似文献
11.
Jörg Rosenberg 《Cell and tissue research》1983,230(2):421-430
Summary In Lithobius forficatus each of the coxae of the four posterior trunk segments bear a pore field with several coxal pores. The surrounding single-layered epithelium is composed of four different cell types: the main epithelial cells having a fine-structural organization of transport cells with deep apical and basal folds of the cell surfaces and plasmalemma-mitochondrial complexes, junctional cells, exocrine glands, and the wall cells of the pore channel. The entire epithelium is separated from the hemolymph by an inner cellular sheath. It is assumed that the coxal organs participate in fluid uptake. 相似文献
12.
We give a first account of our ongoing barcoding activities on Bavarian myriapods in the framework of the Barcoding Fauna Bavarica project and IBOL, the International Barcode of Life. Having analyzed 126 taxa (including 122 species) belonging to all major German chilopod and diplopod lineages, often using four or more specimens each, at the moment our species stock includes 82% of the diplopods and 65% of the chilopods found in Bavaria, southern Germany. The partial COI sequences allow correct identification of more than 95% of the current set of Bavarian species. Moreover, most of the myriapod orders and families appear as distinct clades in neighbour-joining trees, although the phylogenetic relationships between them are not always depicted correctly. We give examples of (1) high interspecific sequence variability among closely related species; (2) low interspecific variability in some chordeumatidan genera, indicating that recent speciations cannot be resolved with certainty using COI DNA barcodes; (3) high intraspecific variation in some genera, suggesting the existence of cryptic lineages; and (4) the possible polyphyly of some taxa, i.e. the chordeumatidan genus Ochogona. This shows that, in addition to species identification, our data may be useful in various ways in the context of species delimitations, taxonomic revisions and analyses of ongoing speciation processes. 相似文献
13.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata. 相似文献
14.
Here, we provide an exemplar-approach phylogeny of the xystodesmid millipede tribe Apheloriini with a focus on genus-group relationships-particularly of the genus Brachoria. Exemplars for the phylogenetic analysis were chosen to represent the maximum breadth of morphological diversity within all nominal genera in the tribe Apheloriini, and to broadly sample the genus Brachoria. In addition, three closely related tribes were used (Rhysodesmini, Nannariini, and Pachydesmini). Morphological and DNA sequence data were scored for Bayesian inference of phylogeny. Phylogenetic analysis resulted in polyphyletic genera Brachoria and Sigmoria, a monophyletic Apheloriini, and a "southern clade" that contains most of the tribal species diversity. We used this phylogeny to track morphological character histories and reconstruct ancestral states using stochastic character mapping. Based on the findings from the character mapping study, the diagnostic feature of the genus Brachoria, the cingulum, evolved independently in two lineages. We compared our phylogeny against prior classifications using Bayes factor hypothesis-testing and found that our phylogenetic hypothesis is inconsistent with the previous hypotheses underlying the most recent classification. With our preferred total-evidence phylogeny as a framework for taxonomic modifications, we describe a new genus, Appalachioria; supply phylogenetic diagnoses of monophyletic taxa; and provide a phylogeny-based classification for the tribe Apheloriini. 相似文献
15.
The water relations of the common brown centipede, Lithobius forficatus (L.), are examined with regard to the possible involvement of the coxal organs in water uptake. Centipedes with blocked and open coxal pores are subjected to a variety of dehydration and rehydration regimes and weight change over time measured. Weight loss and regain is related to body surface area and is not influenced by the coxal organs.
The conclusion of the paper is that the coxal organs of L. forficatus do not contribute significantly to the ability of these animals to recover water lost through cuticular transpiration. 相似文献
The conclusion of the paper is that the coxal organs of L. forficatus do not contribute significantly to the ability of these animals to recover water lost through cuticular transpiration. 相似文献
16.
17.
The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT‐skew (−0.236). Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda. 相似文献
18.
Petr Dolej? 《ZooKeys》2015,(510):5-14
The centipede collection in the National Museum in Prague contains type material of 16 taxa (14 species and two subspecies), of which 15 were described by Luděk J. Dobroruka and one by Karl W. Verhoeff: Allothereua
wilsonae Dobroruka, 1979; Chinobius
alenae Dobroruka, 1980; Lithobius
corrigendus Dobroruka, 1988; Lithobius
creticus Dobroruka, 1977; Lithobius
erythrocephalus
mohelensis Dobroruka, 1959; Lithobius
evae Dobroruka, 1958; Lithobius
magurensis Dobroruka, 1971; Lithobius
purkynei Dobroruka, 1957; Lithobius
tatricus Dobroruka, 1958; Lithobius
tatricus
monounguis Dobroruka, 1958; Monotarsobius
homolaci Dobroruka, 1971; Monotarsobius
krali Dobroruka, 1979; Pachymerium
dilottiae Dobroruka, 1976; Pachymerium
hanzaki Dobroruka, 1976; Scolopendra
aztecorum Verhoeff, 1934 and Strigamia
olympica Dobroruka, 1977. Of these 16 taxa, five were described from the Czech Republic, three from Slovakia and eight from other countries (Greece, Iraq, Kyrgyzstan, Mexico, Nepal, Russia and Uzbekistan). The eight taxa described from the Czech and Slovak Republics are now considered as junior synonyms but the eight taxa described from the other countries are still valid. 相似文献
19.
G. D. Edgecombe G. Giribet 《Journal of Zoological Systematics and Evolutionary Research》2004,42(2):89-134
Relationships within Chilopoda (centipedes) are assessed based on 222 morphological characters, complete 18S rRNA sequences for 70 chilopod terminals, the D3 region of 28S rRNA for 65 terminals, 16S rRNA sequences for 54 terminals and cytochrome c oxidase subunit I sequences for 45 terminals. Morphological and molecular data for seven orders of Diplopoda are used to root cladograms for Chilopoda. Analyses use direct character optimization for 15 gap and substitution models. The Pleurostigmophora and Epimorpha s.l. hypotheses are largely stable to parameter variation for the combined data; the latter clade is formalized as the new taxon Phylactometria. The combined data include parameter sets that support either the monophyly of Epimorpha s.str. (=Scolopendromorpha + Geophilomorpha) or Craterostigmus + Geophilomorpha; the former derives its support from morphology and the nuclear ribosomal genes. Monophyly of Lithobiomorpha and the sister group relationship between Lithobiidae and Henicopidae are stable for morphological and combined data, and are also resolved for the molecular data for 14 of 15 parameter sets. The fundamental split in Scolopendromorpha is between Cryptopidae and Scolopendridae sensu Attems. Blind scolopendromorphs unite as a clade in most molecular and combined analyses, including those that minimize incongruence between data partitions. Geophilomorpha divides into Placodesmata and Adesmata under nine of 15 explored parameter sets. 相似文献
20.
A comparative survey of the epipharynx and hypopharynx of lithobiomorph centipedes by light and scanning electron microscopy examines 18 species that sample the major groups of both families, the Lithobiidae and Henicopidae. Cladistic analysis of 11 characters of the peristomatic structures together with 29 additional morphological characters serves as a basis for interpreting the evolution of the lithobiomorph peristomatic structures. Scutigeromorpha is used for outgroup comparison in the framework of a homology scheme for the basic components of the epi- and hypopharynx. Compared to other chilopods, the monophyly of Lithobiomorpha is supported by a row of distinctive bottle-shaped gland openings at the border between the labral and clypeal parts of the epipharynx, as well as by a distinctive shape of the hypopharynx. Paired rows of elongate spines on the clypeal part of the epipharynx are an apomorphic character of Lithobiidae. The transformation of these spine rows into a few groups of branching spines is characteristic for the Monotarsobius group sensu Verhoeff. Similar groups of branching clypeal spines characterize the Anopsobiinae within Henicopidae, whereas Henicopinae possess a dense cluster of short, simple spines instead. The recently described genus Dzhungaria is resolved closer to Henicopinae than to Anopsobiinae, a hypothesis supported by a field of grooves on the medial labral part of the epipharynx. Monophyly of Henicopidae does not receive unique support from the peristomatic structures although two homoplastic characters contribute to this node; among these, the reduction of a median spine field between clypeal and labral parts of the epipharynx to a narrow transverse band also supports a close relationship between the Ezembius group and Hessebius within Lithobiidae. An Ezembius+Hessebius clade is additionally supported by the absence of a transverse bulge between the clypeal and labral parts of the epipharynx, a character otherwise present in all lithobiomorph species studied so far. Lithobius is resolved as polyphyletic, with different species being most closely related to such genera as Australobius, Hessebius and Pleurolithobius. 相似文献