首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daily oral administration of isoproterenol hydrochloride (60 mg/kg body weight; for 30 days) a beta-receptor agonist to normal innervated and denervated adult male Swiss albino mice confirmed its ability to induce skeletal muscle hypertrophy and reverse denervation atrophy respectively. Measurement of total tissue proteins and dry muscle mass showed 15-17% increase with 6% rise of hypertrophy index in gastrocnemius muscle. Hydroxyproline assay employed to measure the total tissue collagen exhibited 45% increase in collagen in normal innervated gastrocnemius muscle in response to beta agonist treatment. beta-adrenoceptor agonist ameliorated denervation atrophy along with further increase in collagen content of denervated gastrocnemius muscle.  相似文献   

2.
Aim of this study is to analyze the effect of chronic administration of beta agonist isoproterenol hydrochloride (60 mg kg(-1) day(-1); 30 days) on soleus (a slow type) and extensor digitorum longus (EDL, a fast type) muscles in young mice. Isoproterenol resulted in significant increase in muscle weight to whole body weight ratio with no increase in hypertrophy index in soleus muscle. A significant increase in noncontractile protein collagen is also observed in both muscles but more prominent in soleus muscle. Collagen proliferation is also analyzed on sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of pepsin soluble and Cyanogen Bromide (CN Br) treated pepsin insoluble collagen. Isoproterenol remolded the myofibrillar proteins in both muscles but significant increase in myofibrillar ATPase activity occurred only in soleus muscle. It is concluded that growth stimulatory effect of isoproterenol hydrochloride is more prominent in soleus than FDL muscle. Isoproterenol augmented the proliferation of non-contractile protein collagen in soleus and EDL muscles. The transformation in myofibrillar proteins caused by isoproterenol might lead to an enhancement of contractile performance.  相似文献   

3.
Polyamine levels and diamine oxidase (EC 1.4.3.6) activity were studied in hypertrophic heart of spontaneously hypertensive rats as well as in the heart of Wistar rats during the development and regression of cardiac hypertrophy induced by isoproterenol administration. In spontaneously hypertensive rats, putrescine content and diamine oxidase activity were higher than those found in normotensive Kyoto-Wistar control rats. During the development of cardiac hypertrophy induced by isoproterenol, there was an increase in polyamine content and diamine oxidase activity. The administration of cycloheximide or actinomycin D prevented the increase in diamine oxidase activity during the first 24 h after isoproterenol administration, demonstrating that the rise in diamine oxidase activity was due to synthesis of new enzyme. Following the cessation of isoproterenol treatment, cardiac hypertrophy regressed and polyamine levels and diamine oxidase activity diminished toward control values. The administration of aminoguanidine to isoproterenol-treated rats caused in the heart an inhibition of diamine oxidase activity that led to an increase in putrescine level beyond the values found in animals given isoproterenol alone. The results suggest that the enhancement of diamine oxidase activity plays a role in the regulation of putrescine level in hypertrophic heart.  相似文献   

4.
The aim of this study was to determine the contribution of beta-adrenoceptor activation in the reconstruction of the structural and functional organization of denervated skeletal muscle. beta-agonists, clenbuterol (1.2 mg/kg body weight) and isoproterenol (2 mg/kg body weight), administration (daily oral administration; maximum 7 days) to normal innervated rats as well as denervated animals caused muscle hypertrophy. An increase in mean fiber diameter confirmed this stimulated growth both in normal innervated and denervated rat gastrocnemius muscle. Examination of muscle nuclei from treated but normal innervated rat gastrocnemius exhibited features like large size, active nucleoplasm and an increase in their number per fiber cross section and per mm mean fiber length indicating towards an elevated biosynthetic activity in tissue in the presence of beta adrenoceptor agonists. Administration of drugs to normal innervated animals resulted in an emergence of central muscle nuclei. The hyperactive and enlarged muscle nuclei ultimately organized themselves into unusually elongated nuclear streaks. beta agonist treatment to denervated rats resulted in amelioration of atrophic state of tissue characterized by hypertrophy of muscle fibers thus lending to a restoration of structural organization of tissue. Bizarre shapes of nuclei in denervated muscle tend to recover to that characteristic to normal innervated muscle in presence of clenbuterol and isoproterenol hydrochloride. All observations were confirmed by administering butoxamine, a beta-adrenoceptor antagonist along with beta-agonists. The results suggests that both clenbuterol and isoproterenol hydrochloride are capable of mimicking normal innervation functions in skeletal muscle and thus play important role in the structural and functional reorganization of tissue. Amelioration of denervation atrophy in rat gastrocnemius in the presence of beta-agonists supports this.  相似文献   

5.
The presence of two electrophoretically and structurally distinguishable forms of ferritin (“fast” and “slow”) in cardiac and skeletal muscle (diaphragm) of the rat was confirmed. Although the total amount of cardiac ferritin showed no difference in concentration in male and female rats, the distribution between the fast and slow species was remarkedly different in the two sexes, the fast form predominating in the cardiac muscle and diaphragm of the female. In agreement with this, the rates of synthesis and of degradation of the fast species were greater in teh female, while the opposite obtained for the male. Iron administration stimulated synthesis of each ferritin species in the cardiac muscle and diaphragm of both sexes. Induction of cardiac connective tissue hypertrophy with isoproterenol inverted the ratio of slow to fast ferritin in female rats, while iron adminsitration along with isoproterenol restored this to normal. It is concluded that the metabolism of ferritin in cardiac and skeletal muscle is sensitive both to sexual status and to iron administration.  相似文献   

6.
Chronic administration of isoproterenol (ISO) produces hypertrophy of the rat heart and tibialis muscle. With doses of 0.1, 0.3, and 0.6 mg/kg, hypertrophy of the heart is significantly by the 3rd day of treatment. Maximum cardiac enlargement attained with doses of 0.3 and 0.6 mg/kg occurs after 21 days and averages 40% above control values. ISO increases tibialis muscle weight by 15%. Incorporation of 14C-labeled amino acids into total heart and tibialis muscle protein is stimulated by ISO. Maximum stimulation occurs 2-3 h after the fifth daily injection of ISO. The stimulation of incorporation is greater during the first few days of treatment and decreases gradually thereafter. A single injection of ISO decreases the total amino acid concentration of the serum, heart and tibialis muscle whereas the rate of amino acid uptake by the heart and tibialis muscle is increased by ISO. The production of hypertrophy of the heart and tibialis muscle in diabetic or castrated animals by ISO suggests that insulin and testosterone are not essential in the mechanism of ISO-induced hypertrophy.  相似文献   

7.
The amount of type I and type II cyclic AMP-dependent protein kinase present in the rat heart was determined at various times during isoproterenol-induced cardiac hypertrophy. Wistar rats were injected twice daily with isoproterenol (5 mg/kg, s.c.) for 2, 5 or 10 days. Cardiac weight increased gradually over the 10-day period of drug administration, and by day 10, heart weight was 156% of control. Following the cessation of isoproterenol administration, the cardiac weight regressed toward the control value by day 15. An increase in the specific activity of type I protein kinase to 197% of control occurred by day 10. The specific activity of type II protein kinase did not change significantly during either the hypertrophy or regression stage. The increase in the specific activity of type I protein kinase during a chemically-induced trophic response of the heart may indicate that type I cyclic AMP-dependent protein kinase plays a regulatory function in this process.  相似文献   

8.
Chronic administration of d, l isoproterenol, 0.2 – 5 mg/kg/day, for 14–21 days in the male rat produced marked increases in dry ventricle weight (21.1 – 43.6%; p < 0.001). In comparison, an α-adrenergic agonist, phenylephrine (7.5 mg/kg/day) decreased ventricle weight (?15.3%; p < 0.025). Also, isoproterenol injection at 5 mg/kg/day decreased cardiac actomyosin ATPase activity by 23.3% (p < 0.0025) while phenylephrine, administered as above, did not influence ATPase activity. The effect of isoproterenol on heart weight was completely blocked by the β1-adrenergic antagonist practolol (5 mg/kg/day). Albuterol, a relatively specific β2-adrenergic agonist was less potent than isoproterenol in producing cardiac hypertrophy. l-Epinephrine injection, 0.8 mg/kg/day for 14 days, had no effect on heart weight. However, l-epinephrine produced cardiac hypertrophy (22.4% p < 0.001) when the animals were preinjected with the α-adrenergic antagonist, phenoxybenzamine (5 mg/kg/day). The data indicate that cardiac hypertrophy can be produced by stimulation of the β1-adrenergic receptors of the heart; apparently, stimulation of α-adrenergic receptors opposes β-adrenergic hypertrophic effects.  相似文献   

9.
Background: Although inadequate intake of essential nutrient choline has been known to significantly increase cardiovascular risk, whether additional supplement of choline offering a protection against cardiac hypertrophy remain unstudied.Methods: The effects of choline supplements on pathological cardiac hypertrophic growth induced by transverse aorta constriction (TAC) for three weeks and cardiomyocyte hypertrophy in cultured cells induced by isoproterenol (ISO) 10 μM for 48 h stimulation were investigated. Western blot analysis and real-time PCR were used to determine the expression of ANP, BNP, β-MHC, miR-133a and Calcineurin.Results: Administration of 14 mg/kg choline to mice undergone TAC effectively attenuated the cardiac hypertrophic responses, as indicated by the reduced heart weight, left ventricular weight, ventricular thickness, and reduced expression of biomarker genes of cardiac hypertrophy. This anti-hypertrophic efficacy was reproduced in a cellular model of cardiomyocyte hypertrophy induced by isoproterenol in cultured neonatal cardiomyocytes. Our results further showed that choline rescued the aberrant downregulation of the muscle-specific microRNA miR-133a expression, a recently identified anti-hypertrophic factor, and restored the elevated calcineurin protein level, the key signaling molecule for the development of cardiac hypertrophy. These effects of choline were abolished by the M3 mAChR-specific antagonist 4-DAMP.Conclusion: Our study unraveled for the first time the cardioprotection of choline against cardiac hypertrophy, with correction of expression of miR-133a and calcineurin as a possible mechanism. Our findings suggest that choline supplement may be considered for adjunct anti-hypertrophy therapy.  相似文献   

10.
Initial and transient increases in the basal levels of cyclic GMP in the heart were noted prior to cardiac hypertrophy in rats administered isoproterenol. Increased levels of cyclic AMP-phosphodiesterase (in both the soluble and particulate fractions) and stimulatory modulator of cyclic GMP-dependent protein kinase, however, were associated with the progression, or the state, of cardiomegaly, with their levels returning to the control values upon regression of the hypertrophy. The levels of cyclic GMP phosphodiesterase in the soluble fraction were lower, whereas those in the particulate fraction were higher, in the hypertrophied heart than the control. In cardiac hypertrophy, the maximal activity ratio(--cyclic AMP/+cyclic AMP) of cyclic AMP-dependent protein kinase in the incubated minced heart caused by isoproterenol was lower, whereas the concentration of isoproterenol required to increase the activity ratio half-maximally was higher than controls; the reduced responsiveness to the drug, however, was reversed when the hypertrophy regressed. These observations, taken collectively, appear to suggest that the desensitization of the beta-adrenergic mechanism seen in the cardiac hypertrophy produced by repeated administration of isoproterenol is associated with adaptive modifications in certain parameters of the cyclic nucleotide systems.  相似文献   

11.
Both oxidative stress and β-MHC expression are associated with pathological cardiac hypertrophy. β-adrenergic receptor stimulation plays an important role in cardiac hypertrophy. Recent studies have reported a negative interplay between opioid receptors and adrenoceptors in heart. This study investigated the effect of U50,488H (a selective κ-opioid receptor agonist) on myocardial oxidative stress and α- and β-MHC expression in isoproterenol-induced cardiac hypertrophy. Male Wistar rats were administered normal saline (control), isoproterenol (ISO) (5 mg/kg BW s.c. OD), and isoproterenol with U50,488H (0.4 and 0.6 mg/kg BW, i.p. OD) for 14 days. In a separate group, nor-binaltorphimine (nor-BNI) (0.5 mg/kg, BW, i.p.) (κ-receptor antagonist) was administered along with ISO and U50,488H. ISO administration caused significant increase in left ventricular (LV) wall thicknesses, LV mass in echocardiography, heart weight to body weight ratio, and myocyte size as compared to control. Both the doses of U50,488H offered significant protection against these changes. The higher dose of U50,488H significantly prevented ISO-induced increase in myocardial lipid peroxidation and depletion of myocardial antioxidants (glutathione, superoxide dismutase, and catalase), while a similar trend (although not significant) was observed with the lower dose also. ISO-induced myocardial fibrosis was also significantly attenuated by both the doses of U50,488H. Isoproterenol-induced β-MHC expression in the hypertrophied heart was not altered by either doses of U50,488H, however, the latter prevented the loss of myocardial α-MHC expression. All these effects of U50,488H were blocked by nor-BNI. This study provides the evidence that U50,488H reduced oxidative stress and preserved expression of α-MHC in isoproterenol-induced cardiac hypertrophy.  相似文献   

12.
Initial and transient increases in the basal levels of cyclic GMP in the heart were noted prior to cardiac hypertrophy in rats administered isoprotenol. Increased levels of cyclic AMP-phosphodiesterase (in both the soluble and particulate fractions) and stimulatory modulator of cyclic GMP-dependent protein kinase, however, were associated with the progression, or the state, of cardiomegaly, with their levels returning to the control values upon regression of the hypertrophy. The levels of cyclic GMP phosphodiesterase in the soluble fraction were lower, whereas those in the particulate fraction were higher, in the hypertrophied heart than the control. In cardiac hypertrophy, the maximal activity ratio (?cyclic AMP/+cyclic AMP) of cyclic AMP-dependent protein kinase in the incubated minced heart caused by isoproterenol was lower, whereas the concentration of isoproterenol required to increase the activit ratio half-maximally was higher than controls; The reduced responsiveness to the drug, however, was reversed when the hypertrophy regressed. These observations, taken collectively, appear to suggest that the desensitization of the β-adrenergic mechanism seen in the cardiac hypertrophy produced by repeated administration of isoproterenol is associated with adaptive modifications in certain parameters of the cyclic nucleotide systems.  相似文献   

13.
The aim of this study was to evaluate the effects of AVE 0991 (AVE), a nonpeptide compound that mimics Ang-(1-7) actions, on cardiac remodeling. Heart hypertrophy and heart dysfunction were induced by isoproterenol (ISO) (2 mg/kg i.p./day for 7 days) in male Wistar rats. At the end of the 7-day period, the hearts were perfused according to the Langendorff method to evaluate cardiac function. The hearts, atria, and right and left ventricles wet weights were recorded, normalized for body weight and then expressed as muscle mass index (mg/g). In addition, serial sections from left ventricle were stained with hematoxylin-eosin for cell morphometry and with collagen-specific Masson's trichrome for detection of fibrosis. Immunofluorescence-labeling and confocal microscopy were used to investigate the distribution and deposition of collagen types I, III, VI, and fibronectin. AVE reduced the ISO-induced hypertrophy as quantified by myocyte diameter measurements (Control: 10.60+/-0.08 microm; ISO: 14.60+/-0.11 mum; ISO+AVE: 11.22+/-0.08 microm, n = 5). In addition, AVE markedly attenuated the increase of extracellular matrix proteins induced by ISO. AVE treatment also attenuated the decrease in systolic tension and +/-dT/dt and exacerbated the vasodilatation induced by ISO. These results show that AVE has a cardioprotective effect on ISO-induced cardiac remodeling.  相似文献   

14.
Carvedilol has beneficial effects on cardiac function in patients with heart failure but its effect on ovariectomy-induced myocardial contractile dysfunction remains unclear. Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk in postmenopausal women. Our aim was to investigate whether carvedilol, a beta receptor blocker, would prevent ovariectomy-induced myocardial contractile dysfunction. Female rats (8 weeks old) that underwent bilateral ovariectomy were randomly assigned to receive daily treatment with carvedilol (OVX+CAR, 20 mg/kg), placebo (OVX) and SHAM for 58 days. Left ventricle papillary muscle was mounted for isometric tension recordings. The inotropic response to Ca2+ (0.62 to 3.75 mM) and isoproterenol (Iso 10−8 to 10−2 M) were assessed. Expression of calcium handling proteins was measured by western blot analysis. Carvedilol treatment in the OVX animals: prevented weight gain and slight hypertrophy, restored the reduced positive inotropic responses to Ca2+ and isoproterenol, prevented the reduction in SERCA2a expression, abolished the increase in superoxide anion production, normalized the increase in p22phox expression, and decreased serum angiotensin converting enzyme (ACE) activity. This study demonstrated that myocardial contractile dysfunction and SERCA2a down regulation were prevented by carvedilol treatment. Superoxide anion production and NADPH oxidase seem to be involved in this response.  相似文献   

15.
We used cultured neonatal rat cardiac myocytes to test the hypothesis that all-trans retinoic acid (atRA) may act to modulate ANG II actions in inducing myocyte hypertrophy. Our observations were as follows. 1) atRA (10(-7) to approximately 10(-5) M ) inhibited ANG II-induced hyperplasia of fibroblasts in a dose-dependent manner. 2) Treatment of atRA attenuated the ANG II-induced increase in total cell protein content. 3) Treated with ANG II (10(-7) M) for 5 days, the cultured neonatal rat cardiac myocytes demonstrated an apparent accumulation of sarcomeric fiber proteins and Golgi's complex, as well as reorganization of the sarcomeric unit within individual myocytes. atRA (10(-6) M) treatment reduced the accumulation of contractile proteins and Golgi's complex without affecting the ANG II-induced reorganization of the sarcomeric unit. 4) atRA attenuated the ANG II-induced increase in intracellular Ca2+. Our results show that atRA inhibits some effects of ANG II on neonatal rat cardiac myocytes and suggest that atRA may be a therapeutic candidate for the prevention and therapy of cardiac hypertrophy and remodeling.  相似文献   

16.
Beta-agonists have skeletal muscle specific protein anabolic effects and are also known to cause cardiac hypertrophy. Changed total LDH and its isozymic patterns are conveniently employed for the detection of different pathophysiological states of the tissues. The purpose of this study is to confirm total LDH and its isozymic expression in ventricular tissue and serum in mice following oral administration of single but higher dose of isoproterenol (Iso) and clenbuterol (Cl) (100 mg/kg body wt. and 20 mg/kg body wt., respectively), after 4, 8 and 20 hours of drug administration. Mice heart witnessed increased total LDH levels with time. Serum on the other hand showed decline in total LDH concentrations at the initial points of the drug treatment. No doubt, total LDH expression increased towards 20th h post-drug treatment but this increase is mainly due to anaerobic isozymes, i.e. LDH4 and LDH5. The findings of the present study suggest that tissue damage is definitely caused by two beta-agonists after giving single dose for shorter time span (20 hours) and the impact of the damage varies from drug to drug. Increase in total LDH in serum is not due to release from heart but from some other tissues having anaerobic metabolism.  相似文献   

17.
Cardiac hypertrophy and failure were induced in male Wistar rats by daily administration of 5 mg/kg isoproterenol for three weeks. Age-matched animals were used as normal control. To estimate the degree of hypertrophy, the wet heart weight (HW) to body weight (BW) ratio (HW/BW) was used as an index of the myocardial enlargement. By the 7th day of the treatment, the HW/BW ratio was increased to 4.24, as compared with the control value of 3.11. In this early stage of cardiomyopathy, the structure was characterized with small necrotic foci, enlarged myofilaments and swollen mitochondria. The electrical activity showed broadened action potentials with an elevated plateau phase, and increased membrane resistance and time constant. The amplitude of the twitch contractions was elevated. Continuing the treatment of the animals with catecholamine caused a decompensated heart failure by the 21st day. In this late stage, many and large necrotic foci could be observed in the myocardium. The mitochondria were fragmented, and the resistance of the sarcolemma decreased, and the electrical and contractile activity suppressed. The results indicate that an electrically and structurally compensated cardiac hypertrophy model can be produced by a short-term treatment of the animals with isoproterenol, while a long-term treatment causes a decompensated heart failure.  相似文献   

18.
Myofibrillogenesis regulator-1 (MR-1) is a novel homologous gene, identified from a human skeletal muscle cDNA library, that interacts with contractile proteins and exists in human myocardial myofibrils. The present study investigated MR-1 protein expression in hypertrophied myocardium and MR-1 involvement in cardiac hypertrophy. Cardiac hypertrophy was induced by abdominal aortic stenosis (AAS) in Sprague-Dawley rats. Left ventricular (LV) hypertrophy was assessed by the ratio of LV wet weight to whole heart weight (LV/HW) or LV weight to body weight (LV/BW). Rat MR-1 (rMR-1) expression in the myocardium was detected by immunohistochemical and Western blotting analysis. Hypertrophy was induced by ANG II incubation in cultured neonatal rat cardiomyocytes. The effect of rMR-1 RNA interference on ANG II-induced hypertrophy was studied by transfection of cardiomyocytes with an RNA interference plasmid, pSi-1, which targets rMR-1. Hypertrophy in cardiomyocytes was assessed by [3H]Leu incorporation and myocyte size. rMR-1 protein expression in cardiomyocytes was detected by Western blotting. We found that AAS resulted in a significant increase in LV/HW and LV/BW: 89% and 86%, respectively (P < 0.01). Immunohistochemistry and Western blot analysis demonstrated upregulated rMR-1 protein expression in hypertrophic myocardium. ANG II induced a 24% increase in [3H]Leu incorporation and a 65.8% increase in cell size compared with control cardiomyocytes (P < 0.01), which was prevented by treatment with losartan, an angiotensin (AT1) receptor inhibitor, or transfection with pSi-1. rMR-1 expression increased in ANG II-induced hypertrophied cardiomyocytes, and pSi-1 transfection abolished the upregulation. These findings suggest that MR-1 is associated with cardiac hypertrophy in rats in vivo and in vitro.  相似文献   

19.
Transforming growth factor-beta(1) (TGF-beta(1)) promotes or inhibits cell proliferation and induces fibrotic processes and extracellular matrix production in numerous cell types. Several cardiac diseases are associated with an increased expression of TGF-beta(1) mRNA, particularly during the transition from stable cardiac hypertrophy to heart failure. In vitro studies suggest a link between TGF-beta(1) signaling and the beta-adrenergic system. However, the in vivo effects of this growth factor on myocardial tissue have been poorly identified. In transgenic mice overexpressing TGF-beta(1) (TGF-beta), we investigated the in vivo effects on cardiac morphology, beta-adrenergic signaling, and contractile function. When compared with nontransgenic controls (NTG), TGF-beta mice revealed significant cardiac hypertrophy (heart weight, 164 +/- 7 vs. 130 +/- 3 mg, P < 0.01; heart weight-to-body weight ratio, 6.8 +/- 0.3 vs. 5.1 +/- 0.1 mg/g, P < 0.01), accompanied by interstitial fibrosis. These morphological changes correlated with an increased expression of hypertrophy-associated proteins such as atrial natriuretic factor (ANF). Furthermore, overexpression of TGF-beta(1) led to alterations of beta-adrenergic signaling as myocardial beta-adrenoceptor density increased from 7.3 +/- 0.3 to 11.2 +/- 1.1 fmol/mg protein (P < 0.05), whereas the expression of beta-adrenoceptor kinase-1 and inhibitory G proteins decreased by 56 +/- 9.7% and 58 +/- 7.6%, respectively (P < 0.05). As a consequence of altered beta-adrenergic signaling, hearts from TGF-beta showed enhanced contractile responsiveness to isoproterenol stimulation. In conclusion, we conclude that TGF-beta(1) induces cardiac hypertrophy and enhanced beta-adrenergic signaling in vivo. The morphological alterations are either induced by direct effects of TGF-beta(1) or may at least in part result from increased beta-adrenergic signaling, which may contribute to excessive catecholamine stimulation during the transition from compensated hypertrophy to heart failure.  相似文献   

20.
1. Parotid gland secretory function and activity of several enzymes involved in intracellular second messenger signalling were measured in rats receiving 0.5 ml i.p. injections of saline (control), isoproterenol, CCK or both drugs.2. Isoproterenol caused a 2.5-fold increase in parotid gland wet weight compared to control. Chronic administration of CCK alone has no effect on gland weight. A combination of CCK and isoproterenol did not alter the hypertrophy of the gland observed with isoproterenol alone.3. Isoproterenol administration caused a 74% decrease in parotid gland amylase enzyme activity. While CCK alone did not influence the enzyme activity, it depressed amylase mRNA steady state levels and had an additive effect on further decreasing mRNA levels when administered in combination with β-agonist.4. Phospholipase C registered an increase ranging from 22 to 38% in all experimental groups as compared to control.5. Parotid gland protein kinase C and PdtIns 3-kinase activity were not altered in response to CCK alone, but in combination with isoproterenol, appeared to moderate β-agonist signal transduction responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号