首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient and metabolite transport through the cartilage endplate (CEP) is important for maintaining proper disc nutrition, but the mechanisms of solute transport remain unclear. One unresolved issue is the role of dynamic loading. In comparison to static loading, dynamic loading is thought to enhance transport by increasing convection. However, the CEP has a high resistance to fluid flow, which could limit solute convection. Here we measure solute transport through site-matched cadaveric human lumbar CEP tissues under static vs. dynamic loading, and we determine how the degree of transport enhancement from dynamic loading depends on CEP porosity and solute size. We found that dynamic loading significantly increased small and large solute transport through the CEP: on average, dynamic loading increased the transport of sodium fluorescein (376 Da) by a factor of 1.85 ± 0.64 and the transport of a large dextran (4000 Da) by a factor of 4.97 ± 3.05. Importantly, CEP porosity (0.65 ± 0.07; range: 0.47–0.76) strongly influenced the degree of transport enhancement. Specifically, for both solutes, transport enhancement was greater for CEPs with low porosity than for CEPs with high porosity. This is because the CEPs with low porosity were susceptible to larger improvements in fluid flow under dynamic loading. The CEP becomes less porous and less hydrated with aging and as disc degeneration progresses. Together, these findings suggest that as those changes occur, dynamic loading has a greater effect on solute transport through the CEP compared to static loading, and thus may play a larger role in disc nutrition.  相似文献   

2.
Frictionless specimen/platen contact in unconfined compression tests has traditionally been assumed in determining material properties of soft tissues via an analytical solution. In the present study, the suitability of this assumption was examined using a finite element method. The effect of the specimen/platen friction on the mechanical characteristics of soft tissues in unconfined compression was analyzed based on the published experimental data of three different materials (pigskin, pig brain, and human calcaneal fat). The soft tissues were considered to be nonlinear and viscoelastic; the friction coefficient at the contact interface between the specimens and platens was assumed to vary from 0.0 to 0.5. Our numerical simulations show that the tissue specimens are, due to the specimen/platen friction, not compressed in a uniform stress/strain state, as has been traditionally assumed in analytical analysis. The stress of the specimens obtained with the specimen/platen friction can be greater than those with the frictionless specimen/platen contact by more than 50%, even in well-controlled test conditions.  相似文献   

3.
A F Mak 《Biorheology》1986,23(4):371-383
A biphasic poroviscoelastic theory was used to analyze the unconfined compression creep and stress relaxation of a hydrated viscoelastic tissue. The intrinsic shear properties of the tissue matrix was described by an integral-type viscoelastic constitutive law while the intrinsic bulk property of the matrix was assumed to be linearly elastic. Parametric data were presented to show how the two major energy dissipative mechanisms, namely the interstitial fluid flow and the intrinsic matrix viscoelasticity, may each contribute to the apparent viscoelastic behavior of the whole tissue under unconfined compression. The hydraulic permeability of the tissue was found to enter in only as a scaling factor for time.  相似文献   

4.
Fluid in interstitial spaces accounts for ~20% of an adult body weight and flows diffusively for a short range. Does it circulate around the body like vascular circulations? This bold conjecture has been debated for decades. As a conventional physiological concept, interstitial space is a micron‐sized space between cells and vasculature. Fluid in interstitial spaces is thought to be entrapped within interstitial matrix. However, our serial data have further defined a second space in interstitium that is a nanosized interfacial transport zone on a solid surface. Within this fine space, fluid along a solid fibre can be transported under a driving power and identically, interstitial fluid transport can be visualized by tracking the oriented fibres. Since 2006, our data from volunteers and cadavers have revealed a long‐distance extravascular pathway for interstitial fluid flow, comprising at least four types of anatomic distributions. The framework of each extravascular pathway contains the longitudinally assembled and oriented fibres, working as a fibrorail for fluid flow. Interestingly, our data showed that the movement of fluid in a fibrous pathway is in response to a dynamic driving source and named as dynamotaxis. By analysis of previous studies and our experimental results, a hypothesis of interstitial fluid circulatory system is proposed.  相似文献   

5.
This paper describes a new apparatus and method for measuring swelling dependent electrical conductivity of charged hydrated soft tissues. The apparatus was calibrated using a conductivity standard. Swelling dependent specific conductivity of porcine annulus fibrosis (AF) samples was determined. The conductivity values for porcine AF were similar to those for human and bovine articular cartilage found in the literature. Results revealed a significant linear correlation between specific conductivity and water content for porcine AF tissues tested in phosphate buffered saline (PBS).  相似文献   

6.
Experimental tests, such as the confined and unconfined compression and the indentation tests, are traditionally used to determine the poroelastic properties of hydrated soft tissues (HSTs). The purpose of this study was to quantitatively evaluate the reliability of H(A) and K values as identified from experimental confined test data, estimating the errors that could occur in several situations with more realistic sample geometry and boundary conditions. Finite element models of the step-wise stress-relaxation confined compression tests on HSTs were developed including geometrical imperfections of the sample and the presence of a gap between the piston and the confining chamber. The errors occurring when H(A) and K were estimated by means of the analytical solution of the 1-D confined compression problem were assessed. Results of the analysis indicate that errors in the parameter estimation due to geometrical inaccuracies of the sample can be eliminated by applying a 5% strain pre-compression to the sample. Gap errors are negligible for H(A), can reach 20% for K, and cannot be eliminated by a pre-compression of the sample.  相似文献   

7.
Pathophysiology of the temporomandibular joint (TMJ) disc is central to many orofacial disorders; however, mechanical characterization of this tissue is incomplete. In this study, we identified surface-regional mechanical variations in the porcine TMJ disc under unconfined compression. The intermediate zone, posterior, anterior, lateral, and medial regions of eight TMJ discs were sectioned into inferior and superior surface samples. Surface-regional sections were then subjected to incremental stress relaxation tests. Single strain step (SSS) and final deformation (FD) viscoelastic models were fit to experimental data. Both models represented the experimental data with a high degree of accuracy (R(2)=0.93). The instantaneous modulus and relaxation modulus for the TMJ disc sections were approximately 500 kPa and 80 kPa, respectively; the coefficient of viscosity was approximately 3.5 MPa-s. Strain dependent material properties were observed across the disc's surface-regions. Regional variations in stiffness were observed in both models. The relaxation modulus was largest in the inferior-medial parts of the disc. The instantaneous modulus was largest in the posterior and anterior regions of the disc. Surface-to-surface variations were observed in the relaxation modulus for only the FD model; the inferior surface was found to be more resistant to compression than the superior surface. The results of this study imply the stiffness of the TMJ disc may change as strain is applied. Furthermore, the lateral region exhibited a lower viscosity and stiffness compared to other disc regions. Both findings may have important implications on the TMJ disc's role in jaw motion and function.  相似文献   

8.
Solute transport through the extracellular matrix is essential for cellular activities in articular cartilage. Increased solute transport via fluid convection may be a mechanism by which dynamic compression stimulates chondrocyte metabolism. However, loading conditions that optimally augment transport likely vary for different solutes. To investigate effects of dynamic loading on transport of a bioactive solute, triangular mechanical loading waveforms were applied to cartilage explants disks while interstitial transport of a fluorescent glucose analog was monitored. Peak-to-peak compression amplitudes varied from 5-50% and frequencies varied from 0.0006-0.1 Hz to alter the spatial distribution and magnitude of oscillatory fluid flow. Solute transport was quantified by monitoring accumulation of fluorescence in a saline bath circulated around the explant. Individual explants were subjected to a series of compression protocols, so that effects of loading on solute desorption could be observed directly. Maximum increases in solute transport were obtained with 10-20% compression amplitudes at 0.1 Hz; similar loading protocols were previously found to stimulate chondrocyte metabolism in vitro. Results therefore support hypotheses relating to increased solute transport as a mediator of the cartilage biological response to dynamic compression, and may have application in mechanical conditioning of cartilage constructs for tissue engineering.  相似文献   

9.
《Biorheology》1996,33(4-5):289-304
To study the effect of dynamic mechanical force on cartilage metabolism, many investigators have applied a cyclic compressive load to cartilage disc explants in vitro. The most frequently used in vitro testing protocol has been the cyclic unconfined compression of articular cartilage in a bath of culture medium. Cyclic compression has been achieved by applying either a prescribed cyclic displacement or a prescribed cyclic force on a loading platen placed on the top surface of a cylindrical cartilage disc. It was found that the separation of the loading platen from the tissue surface was likely when a prescribed cyclic displacement was applied at a high frequency.The purpose of the present study was to simulate mathematically the dynamic behavior of a cylindrical cartilage disc subjected to cyclic unconfined compression under a dynamic force boundary condition protocol, and to provide a parametric analysis of mechanical deformations within the extracellular matrix. The frequency-dependent dynamic characteristics of dilatation, hydrostatic pressure and interstitial fluid velocity were analyzed over a wide range of loading frequencies without the separation of the loading platen. The result predicted that a cyclic compressive force created an oscillating positive-negative hydrostatic pressure together with a forced circulation of interstitial fluid within the tissue matrix. It was also found that the load partitioning mechanism between the solid and fluid phases was a function of loading frequency. At a relatively high loading frequency, a localized dynamic zone was developed near the peripheral free surface of the cartilage disc, where a large dynamic pressure gradient exists, causing vigorous interstitial fluid flow.  相似文献   

10.
As a prelude to the understanding of mechanotransduction in human embryonic stem cell (hESC) differentiation, the mechanical behavior of hESCs in the form of cell pellet is studied. The pellets were tested after 3 or 5 weeks of cell culture in order to demonstrate the effect of the duration of cell culture on the mechanical properties of the pellets. A micromechanical tester was used to conduct unconfined compression on hESC pellet, and experimental, numerical, and analytical methods were combined to determine the mechanical properties of hESC pellet. It is assumed that the mechanical behavior of hESC pellets can be described by an isotropic, linear viscoelastic model consisting of a spring and two Maxwell units in parallel, and the Poisson’s ratio of the hESC pellet is constant based on pellet deformation in the direction perpendicular to the compression direction. Finite element method (FEM) simulation was adopted to determine the values of Poisson’s ratio and the five parameters contained in the viscoelastic model. The variations of Poisson’s ratio and the initial elastic modulus are found to be larger compared with those of the four other parameters. Results show that longer duration of cell culture leads to higher modulus of hESC pellet. The effect of pellet size error on the values of mechanical parameters determined is studied using FEM simulation, and it is found that the effect of size error on Poisson’s ratio and initial elastic modulus is much larger than that on the other parameters.  相似文献   

11.
Yao H  Gu WY 《Journal of biomechanics》2007,40(9):2071-2077
A 3D inhomogeneous finite-element model for charged hydrated soft tissues containing charged/uncharged solutes was developed and applied to analyze the mechanical, chemical, and electrical signals within the human intervertebral disc during an axial unconfined compression. The effects of tissue properties and boundary conditions on the physical signals and the transport of fluid and solute were investigated. The numerical simulation showed that, during disc compression, the fluid pressurization and the effective (von Misses) solid stress were more pronounced in the annulus fibrosus (AF) region near the interface between AF and nucleus pulposus (NP). In NP, the distributions of the fluid pressure, effective stress, and electrical potential were more uniform than those in AF. The electrical signals were very sensitive to fixed charge density. Changes in material properties of NP (water content, fixed charge density, and modulus) affected fluid pressure, electrical potential, effective stress, and solute transport in the disc. This study is important for understanding disc biomechanics, disc nutrition, and disc mechanobiology.  相似文献   

12.
A range of P2 receptor subtypes has been identified along the renal tubule, in both apical and basolateral membranes. Furthermore, it has been shown that nucleotides are released from renal tubular cells, and that ectonucleotidases are present in several nephron segments. These findings suggest an autocrine/paracrine role for nucleotides in regulating tubular function. The present review catalogues the known actions of extracellular nucleotides on tubular solute transport. In the proximal tubule, there is firm evidence that stimulation of apical P2Y1 receptors inhibits bicarbonate reabsorption, whilst basolaterally applied ATP has the opposite effect. Clearance studies suggest that systemic diadenosine polyphosphates profoundly reduce proximal tubular fluid transport, through as yet unidentified P2 receptors. To date, only circumstantial evidence is available for an action of nucleotides on transport in the loop of Henle; and no studies have been made on native distal tubules, though observations in cell lines suggest an inhibitory effect on sodium, calcium and magnesium transport. The nephron segment most studied is the collecting duct. Apically applied nucleotides inhibit the activity of small-conductance K+ channels in mouse collecting duct, apparently through stimulation of P2Y2 receptors. There is also evidence, from cell lines and native tissue, that apically (and in some cases basolaterally) applied nucleotides inhibit sodium reabsorption. In mice pharmacological profiling implicates P2Y2 receptors; but in rats, the receptor subtype(s) responsible is/are unclear. Recent patch-clamp studies in rat collecting ducts implicate apical P2Y and P2X subtypes, with evidence for both inhibitory and stimulatory effects. Despite considerable progress, clarification of the physiological role of the tubular P2 receptor system remains some way off.  相似文献   

13.
Thorough analyses of the mechano-electrochemical interaction between articular cartilage matrix and the chondrocytes are crucial to understanding of the signal transduction mechanisms that modulate the cell metabolic activities and biosynthesis. Attempts have been made to model the chondrocytes embedded in the collagen-proteoglycan extracellular matrix to determine the distribution of local stress-strain field, fluid pressure and the time-dependent deformation of the cell. To date, these models still have not taken into account a remarkable characteristic of the cartilage extracellular matrix given rise from organization of the collagen fiber architecture, now known as the tension-compression nonlinearity (TCN) of the tissue, as well as the effect of negative charges attached to the proteoglycan molecules, and the cell cytoskeleton that interacts with mobile ions in the interstitial fluid to create osmotic and electro-kinetic events in and around the cells. In this study, we proposed a triphasic, multi-scale, finite element model incorporating the Conewise Linear Elasticity that can describe the various known coupled mechanical, electrical and chemical events, while at the same time representing the TCN of the extracellular matrix. The model was employed to perform a detailed analysis of the chondrocytes' deformational and volume responses, and to quantitatively describe the mechano-electrochemical environment of these cells. Such a model describes contributions of the known detailed micro-structural and composition of articular cartilage. Expectedly, results from model simulations showed substantial effects of the matrix TCN on the cell deformational and volume change response. A low compressive Poisson's ratio of the cartilage matrix exhibiting TCN resulted in dramatic recoiling behavior of the tissue under unconfined compression and induced significant volume change in the cell. The fixed charge density of the chondrocyte and the pericellular matrix were also found to play an important role in both the time-dependent and equilibrium deformation of the cell. The pericellular matrix tended to create a uniform osmolarity around the cell and overall amplified the cell volume change. It is concluded that the proposed model can be a useful tool that allows detailed analysis of the mechano-electrochemical interactions between the chondrocytes and its surrounding extracellular matrix, which leads to more quantitative insights in the cell mechano-transduction.  相似文献   

14.
15.
The tensile and compressive properties of human glenohumeral cartilage were determined by testing 120 rectangular strips in uniaxial tension and 70 cylindrical plugs in confined compression, obtained from five human glenohumeral joints. Specimens were harvested from five regions across the articular surface of the humeral head and two regions on the glenoid. Tensile strips were obtained along two orientations, parallel and perpendicular to the split-line directions. Two serial slices through the thickness, corresponding to the superficial and middle zones of the cartilage layers, were prepared from each tensile strip and each compressive plug. The equilibrium tensile modulus and compressive aggregate modulus of cartilage were determined from the uniaxial tensile and confined compression tests, respectively. Significant differences in the tensile moduli were found with depth and orientation relative to the local split-line direction. Articular cartilage of the humeral head was significantly stiffer in tension than that of the glenoid. There were significant differences in the aggregate compressive moduli of articular cartilage between superficial and middle zones in the humeral head. Furthermore, tensile and compressive stress-strain responses exhibited nonlinearity under finite strain, while the tensile modulus differed by up to two orders of magnitude from the compressive aggregate modulus at 0% strain, demonstrating a high degree of tension-compression nonlinearity. The complexity of the mechanical properties of human glenohumeral cartilage was exposed in this study, showing anisotropy, inhomogeneity, and tension-compression nonlinearity within the same joint. The observed differences in the tensile properties of human glenohumeral cartilage suggest that the glenoid may be more susceptible to cartilage degeneration than the humeral head.  相似文献   

16.
This biomechanical study reports strain gradients in patellofemoral joint cross-sections of seven porcine specimens in response to 1% unconfined axial compression subsequent to specific amounts of off-set strain. Strain distributions were quantified with a customized laser-based electronic speckle pattern interferometry (ESPI) system in a non-contact manner, delivering high-resolution, high-sensitivity strain maps over entire patellofemoral cartilage cross-sections. Strain reports were evaluated to determine differences in strain magnitudes between the superficial, middle, and deep cartilage layers in femoral and patellar cartilage. In addition, the effect of 5%, 10%, 15%, and 20% off-set strain on depth-dependent strain gradients was quantified. Regardless of the amount of off-set strain, the superficial layer of femoral cartilage absorbed the most strain, and the deep layer absorbed the least strain. These depth-dependent strain gradients were most pronounced for 5% off-set strain, at which the superficial layer absorbed on average 5.7 and 23.7 times more strain as compared to the middle and deep layers, respectively. For increased off-set strain levels, strain gradients became less pronounced. At 20% off-set strain, differences in layer-specific strain were not statistically significant, with the superficial layer showing a 1.4 fold higher strain as the deep layer. Patellar cartilage exhibited similar strain gradients and effects of off-set strain, although the patellar strain was on average 19% larger as compared to corresponding femoral strain reports. This study quantified for the first time continuous strain gradients over patellofemoral cartilage cross-sections. Next to provision of a detailed functional characterization of normal diarthrodial joints, this novel experimental approach holds considerable attraction to investigate joint degenerative processes.  相似文献   

17.
The stiffness of articular cartilage is a nonlinear function of the strain amplitude and strain rate as well as the loading history, as a consequence of the flow of interstitial water and the stiffening of the collagen fibril network. This paper presents a full investigation of the interplay between the fluid kinetics and fibril stiffening of unconfined cartilage disks by analyzing over 200 cases with diverse material properties. The lower and upper elastic limits of the stress (under a given strain) are uniquely established by the instantaneous and equilibrium stiffness (obtained numerically for finite deformations and analytically for small deformations). These limits could be used to determine safe loading protocols in order that the stress in each solid constituent remains within its own elastic limit. For a given compressive strain applied at a low rate, the loading is close to the lower limit and is mostly borne directly by the solid constituents (with little contribution from the fluid). In contrast, however in case of faster compression, the extra loading is predominantly transported to the fibrillar matrix via rising fluid pressure with little increase of stress in the nonfibrillar matrix. The fibrillar matrix absorbs the loading increment by self-stiffening: the quicker the loading the faster the fibril stiffening until the upper elastic loading limit is reached. This self-protective mechanism prevents cartilage from damage since the fibrils are strong in tension. The present work demonstrates the ability of the fibril reinfored poroelastic models to describe the strain rate dependent behavior of articular cartilage in unconfined compression using a mechanism of fibril stiffening mainly induced by the fluid flow.  相似文献   

18.
A biphasic mixture model is developed that can account for the observed tension-compression nonlinearity of cartilage by employing the continuum-based Conewise Linear Elasticity (CLE) model of Curnier et al. (J. Elasticity, 37, 1-38, 1995) to describe the solid phase of the mixture. In this first investigation, the orthotropic octantwise linear elasticity model was reduced to the more specialized case of cubic symmetry, to reduce the number of elastic constants from twelve to four. Confined and unconfined compression stress-relaxation, and torsional shear testing were performed on each of nine bovine humeral head articular cartilage cylindrical plugs from 6 month old calves. Using the CLE model with cubic symmetry, the aggregate modulus in compression and axial permeability were obtained from confined compression (H-A = 0.64 +/- 0.22 MPa, k2 = 3.62 +/- 0.97 x 10(-16) m4/N.s, r2 = 0.95 +/- 0.03), the tensile modulus, compressive Poisson ratio, and radial permeability were obtained from unconfined compression (E+Y = 12.75 +/- 1.56 MPa, v- = 0.03 +/- 0.01, kr = 6.06 +/- 2.10 x 10(-16) m4/N.s, r2 = 0.99 +/- 0.00), and the shear modulus was obtained from torsional shear (mu = 0.17 +/- 0.06 MPa). The model was also employed to predict the interstitial fluid pressure successfully at the center of the cartilage plug in unconfined compression (r2 = 0.98 +/- 0.01). The results of this study demonstrate that the integration of the CLE model with the biphasic mixture theory can provide a model of cartilage that can successfully curve-fit three distinct testing configurations while producing material parameters consistent with previous reports in the literature.  相似文献   

19.
20.
Observations in compression tests of articular cartilage have revealed unequal load increments for compression and release of the same amplitude applied to a disk with an identical previously imposed compression (in equilibrium). The mechanism of this asymmetric transient response is investigated here using a nonlinear fibril-reinforced model. It is found that the asymmetry is predominantly produced by the fibril stiffening with its tensile strain. In addition, allowing the hydraulic permeability to decrease significantly with compressive dilatation of cartilage increases the transient fibril strain, resulting in a stronger asymmetry. Large deformation also enhances the asymmetry as a consequence of stronger fibril stiffening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号