首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ExoS is a type III cytotoxin of Pseudomonas aeruginosa, which modulates two eukaryotic signalling pathways. The N-terminus (residues 1-234) is a GTPase activating protein (GAP) for RhoGTPases, while the C-terminus (residues 232-453) encodes an ADP-ribosyltransferase. Utilizing a series of N-terminal deletion peptides of ExoS and an epitope-tagged full-length ExoS, two independent domains have been identified within the N-terminus of ExoS that are involved in intracellular localization and expression of GAP activity. N-terminal peptides of ExoS localized to the perinuclear region of CHO cells, and a membrane localization domain was localized between residues 36 and 78 of ExoS. The capacity to elicit CHO cell rounding and express GAP activity resided within residues 90-234 of ExoS, which showed that membrane localization was not required to elicit actin reorganization. ExoS was present in CHO cells as a full-length form, which fractionated with membranes, and as an N-terminally processed fragment, which localized to the cytosol. Thus, ExoS localizes in eukaryotic cells to the perinuclear region and is processed to a soluble fragment, which possesses both the GAP and ADP-ribosyltransferase activities.  相似文献   

2.
ExoS is a bifunctional type III cytotoxin produced by Pseudomonas aeruginosa. Residues 96-232 comprise the Rho GTPase activating protein (Rho GAP) domain, whereas residues 233-453 comprise the 14-3-3-dependent ADP-ribosyltransferase domain. Earlier studies showed that the N-terminus targeted ExoS to intracellular membranes within eukaryotic cells. This N-terminal targeting region is now characterized for cellular and biological contributions to intoxications by ExoS. An ExoS(1-107)-green fluorescent protein (GFP) fusion protein co-localized with alpha-mannosidase, which indicated that the fusion protein localized near the Golgi. Residues 51-72 of ExoS (termed the membrane localization domain, MLD) were necessary and sufficient for membrane localization within eukaryotic cells. Deletion of the MLD did not inhibit type III secretion of ExoS from P. aeruginosa or type III delivery of ExoS into eukaryotic cells. Type III-delivered ExoS(DeltaMLD) localized within the cytosol of eukaryotic cells, whereas type III-delivered ExoS was membrane associated. Although type III-delivered ExoS(DeltaMLD) stimulated the reorganization of the actin cytoskeleton (a Rho GAP activity), it did not ADP-ribosylate Ras. Type III-delivered ExoS(DeltaMLD) and ExoS showed similar capacities for eliciting a cytotoxic response in CHO cells, which uncoupled the ADP-ribosylation of Ras from the cytotoxicity elicited by ExoS.  相似文献   

3.
Pseudomonas aeruginosa ExoS is a bifunctional type III-secreted cytotoxin. The N terminus (amino acids 96-233) encodes a GTPase-activating protein activity, whereas the C terminus (amino acids 234-453) encodes a factor-activating ExoS-dependent ADP-ribosyltransferase activity. The GTPase-activating protein activity inactivates the Rho GTPases Rho, Rac, and Cdc42 in cultured cells and in vitro, whereas the ADP-ribosylation by ExoS is poly-substrate-specific and includes Ras as an early target for ADP-ribosylation. Infection of HeLa cells with P. aeruginosa producing a GTPase-activating protein-deficient form of ExoS rounded cells, indicating the ADP-ribosyltransferase domain alone is sufficient to elicit cytoskeletal changes. Examination of substrates modified by type III-delivered ExoS identified a 70-kDa protein as an early and predominant target for ADP-ribosylation. Matrix-assisted laser desorption ionization mass spectroscopy identified this protein as moesin, a member of the ezrin/radixin/moesin (ERM) family of proteins. ExoS ADP-ribosylated recombinant moesin at a linear velocity that was 5-fold faster and with a K(m) that was 2 orders of magnitude lower than Ras. Moesin homologs ezrin and radixin were also ADP-ribosylated, indicating the ERMs collectively represent high affinity targets of ExoS. Type III delivered ExoS ADP-ribosylated moesin and ezrin (and/or radixin) in cultured HeLa cells. The ERM proteins contribute to cytoskeleton dynamics, and the ability of ExoS to ADP-ribosylate the ERM proteins links ADP-ribosylation with the cytoskeletal changes associated with ExoS intoxication.  相似文献   

4.
ExoS (453 amino acids) is a bi-functional type-III cytotoxin of Pseudomonas aeruginosa. Residues 96-233 comprise the Rho GTPase-activating protein (Rho GAP) domain, while residues 234-453 comprise the 14-3-3-dependent ADP-ribosyltransferase domain. Residues 51-72 represent a membrane localization domain (MLD), which targets ExoS to perinuclear vesicles within mammalian cells. YopE (219 amino acids) is a type-III cytotoxin of Yersinia that is also a Rho GAP. Residues 96-219 comprise the YopE Rho GAP domain. While the Rho GAP domains of ExoS and YopE share structural homology, unlike ExoS, the intracellular localization of YopE within mammalian cells has not been resolved and is the subject of this investigation. Deletion mapping showed that the N terminus of YopE was required for intracellular membrane localization of YopE in CHO cells. A fusion protein containing the N-terminal 84 amino acids of YopE localized to a punctate-perinuclear region in mammalian cells and co-localized with a fusion protein containing the MLD of ExoS. Residues 54-75 of YopE (termed YopE-MLD) were necessary and sufficient for intracellular localization in mammalian cells. The YopE-MLD localized ExoS to intracellular membranes and targeted ExoS to ADP-ribosylate small molecular weight membrane proteins as observed for native type-III delivered ExoS. These data indicate that the YopE MLD functionally complements the ExoS MLD for intracellular targeting in mammalian cells.  相似文献   

5.
Maresso AW  Riese MJ  Barbieri JT 《Biochemistry》2003,42(48):14249-14257
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin. The N-terminus (residues 1-232) is a Rho GTPase activating protein (GAP) domain, while the C-terminus (residues 233-453) is a FAS-dependent ADP-ribosyltransferase domain that targets Ras and Ras-like GTPases. A membrane localization domain (residues 51-72) localizes ExoS to a perinuclear region within eukaryotic cells. Recent studies observed that ExoS is auto-ADP-ribosylated upon delivery into eukaryotic cells. Auto-ADP-ribosylated ExoS analyzed from eukaryotic cells displayed pI heterogeneity and prompted an analysis of this heterogeneity. Bacterial-associated ExoS and ExoS that had been secreted by P. aeruginosa also showed pI heterogeneity with five charge forms ranging in pI from 5.1 to 5.9. The pI heterogeneity of ExoS was independent of a mass change and thus represented molecular charge conformers. Urea was not required to observe the pI conformers of ExoS; it enhanced the resolution and formation of pI conformers during the focusing component of the analysis. ExoS(E381D), a mutant deficient in ADP-ribosyltransferase activity, isolated from cultured cells showed charge forms that migrated to a more acidic pI than type III secreted ExoS but more basic than auto-ADP-ribosylated ExoS. Incubation of cell lysates with Mn(2+) shifted the pI of ExoS(E381D) to a pI identical to secreted ExoS. This indicates that within the mammalian cells ExoS undergoes a negatively charged modification, in addition to auto-ADP-ribosylation observed for wild-type ExoS. ExoT, ExoU, and YopE also focus into multiple pI forms, suggesting that this is a common property of type III cytotoxins.  相似文献   

6.
Knight DA  Barbieri JT 《Biochemistry》1999,38(18):5858-5863
Earlier studies reported that Pseudomonas aeruginosa exoenzyme S (ExoS) possessed an absolute requirement for the eukaryotic protein factor activating exoenzyme S (FAS) for expressing ADP-ribosyltransferase activity. During the characterization of a serum-derived FAS-like activity, we observed the ability of a catalytic deletion peptide of ExoS (DeltaN222) to ADP-ribosylate target proteins in the absence of FAS. Characterization of the activation of DeltaN222 by FAS provided an opportunity to gain insight into the mechanism of ExoS activation by FAS. Under standard enzyme assay conditions, the initial rate of FAS-independent ADP-ribosyltransferase activity of DeltaN222 was not linear with time and rapidly approached zero. Dilution into high-ionic strength buffers stabilized DeltaN222 so it could express FAS-independent ADP-ribosyltransferase activity at a linear rate. This stabilization was a general salt effect, since dilution into a 1.0 M solution of either NaCH3COOH, NaCl, or KCl stabilized the ADP-ribosyltransferase activity of DeltaN222. Kinetic analysis in a high-ionic strength buffer showed that FAS enhanced the catalytic activity of DeltaN222 by increasing the affinity for NAD and stimulating the turnover rate. Velocity experiments indicated that the stabilization of DeltaN222 by high salt was not functionally identical to stabilization by FAS. Together, these data implicate a dual role for FAS in the allosteric activation of ExoS, involving both substrate binding and catalysis.  相似文献   

7.
Pseudomonas aeruginosa causes life-threatening infections in compromised and cystic fibrosis patients. Pathogenesis stems from a number of virulence factors, including four type III translocated cytotoxins: ExoS, ExoT, ExoY and ExoU. ExoS is a bifunctional toxin: the N terminus (amino acids 96-219) encodes a Rho GTPase Activating Protein (GAP) domain. The C terminus (amino acids 234-453) encodes a 14-3-3-dependent ADP-ribosyltransferase domain which transfers ADP-ribose from NAD onto substrates such as the Ras GTPases and vimentin. Ezrin/radixin/moesin (ERM) proteins have recently been identified as high-affinity substrates for ADP-ribosylation by ExoS. Expression of ExoS in HeLa cells led to a loss of phosphorylation of ERM proteins that was dependent upon the expression of ADP-ribosyltransferase activity. MALDI-MS and site-directed mutagenesis studies determined that ExoS ADP-ribosylated moesin at three C-terminal arginines (Arg553, Arg560 and Arg563), which cluster Thr558, the site of phosphorylation by protein kinase C and Rho kinase. ADP-ribosylated-moesin was a poor target for phosphorylation by protein kinase C and Rho kinase, which showed that ADP-ribosylation directly inhibited ERM phosphorylation. Expression of dominant active-moesin inhibited cell rounding elicited by ExoS, indicating that moesin is a physiological target in cultured cells. This is the first demonstration that a bacterial toxin inhibits the phosphorylation of a mammalian protein through ADP-ribosylation. These data explain how the expression of the ADP-ribosylation of ExoS modifies the actin cytoskeleton and indicate that ExoS possesses redundant enzymatic activities to depolymerize the actin cytoskeleton.  相似文献   

8.
Genetic studies have shown that the 53-kDa (Exo53) and 49-kDa (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa are encoded by separate genes, termed exoT and exoS, respectively. Although ExoS and Exo53 possess 76% primary amino acid homology, Exo53 has been shown to express ADP-ribosyltransferase activity at about 0.2% of the specific activity of ExoS. The mechanism for the lower ADP-ribosyltransferase activity of Exo53 relative to ExoS was analyzed by using a recombinant deletion protein which contained the catalytic domain of Exo53, comprising its 223 carboxyl-terminal residues (termed N223-53). N223-53 was expressed in Escherichia coli as a stable, soluble fusion protein which was purified to >80% homogeneity. Under linear velocity conditions, N223-53 catalyzed the FAS (for factor activating exoenzyme S)-dependent ADP-ribosylation of soybean trypsin inhibitor (SBTI) at 0.4% and of the Ras protein at 1.0% of the rates of catalysis by N222-49. N222-49 is a protein comprising the 222 carboxyl-terminal residues of ExoS, which represent its catalytic domain. N223-53 possessed binding affinities for NAD and SBTI similar to those of N222-49 (less than fivefold differences in Kms) but showed a lower velocity rate for the ADP-ribosylation of SBTI. This indicated that the primary defect for ADP-ribosylation by Exo53 resided within its catalytic capacity. Analysis of hybrid proteins, composed of reciprocal halves of N223-53 and N222-49, localized the catalytic defect to residues between positions 235 and 349 of N223-53. E385 was also identified as a potential active site residue of Exo53.  相似文献   

9.
Pseudomonas aeruginosa exoenzyme S (ExoS) is a bifunctional cytotoxin. The ADP-ribosyltransferase domain is located within the C terminus part of ExoS. Recent studies showed that the N terminus part of ExoS (amino acid residues 1-234, ExoS(1-234)), which does not possess ADP-ribosyltransferase activity, stimulates cell rounding when transfected or microinjected into eukaryotic cells. Here we studied the effects of ExoS(1-234) on nucleotide binding and hydrolysis by Rho GTPases. ExoS(1-234) (100-500 nM) did not influence nucleotide exchange of Rho, Rac, and Cdc42 but increased GTP hydrolysis. A similar increase in GTPase activity was stimulated by full-length ExoS. Half-maximal stimulation of GTP hydrolysis by Rho, Rac, and Cdc42 was observed at 10-11 nM ExoS(1-234), respectively. We identified arginine 146 of ExoS to be essential for the stimulation of GTPase activity of Rho proteins. These data identify ExoS as a GTPase-activating protein for Rho GTPases.  相似文献   

10.
Pseudomonas aeruginosa Exoenzyme S (ExoS) is a bifunctional type-III cytotoxin. The N-terminus (residues 1-232) possesses Rho GTPase-activating (GAP) activity, while the C-terminus (residues 233-453) comprises an ADP-ribosyltransferase domain. Amino acid residues 51-72 of ExoS are involved in membrane binding and aggregation, which has complicated purification schemes. Here, it is reported on the expression, purification, and characterization of two recombinant forms of ExoS that lack this membrane-binding domain, designated rExoS78-453 and rExoSdelta51-72. Purification of these forms was achieved using sequential NTA/Ni(2+)-affinity, gel filtration, and anion-exchange chromatography. Both forms of ExoS possessed Rho GAP activity and ADP-ribosyltransferase activity comparable to wild-type ExoS. Mass spectrometry showed that rExoS78-453 and rExoSdelta51-72 had molecular masses similar to their predicted molecular masses.  相似文献   

11.
Exoenzyme S is an ADP-ribosylating extracellular protein of Pseudomonas aeruginosa that is produced as two immunologically related forms, a 49-kDa enzymatically active form and a 53-kDa inactive form. The postulated relationship between the two proteins involves a carboxy-terminal proteolytic cleavage of the 53-kDa precursor to produce an enzymatically active 49-kDa protein. To determine the genetic relationship between the two forms of exoenzyme S, exoS (encoding the 49-kDa form) was used as a probe in Southern blot analyses of P. aeruginosa chromosomal digests. Cross-hybridizing bands were detected in chromosomal digests of a strain of P. aeruginosa in which exoS had been deleted by allelic exchange. A chromosomal bank was prepared from the exoS deletion strain, 388deltaexoS::TC, and screened with a probe internal to exoS. Thirteen clones that cross-hybridized with the exoS probe were identified. One representative clone contained the open reading frame exoT; this open reading frame encoded a protein of 457 amino acids which showed 75% amino acid identity to ExoS. The exoT open reading frame, cloned into a T7 expression system, produced a 53-kDa protein in Escherichia coli, termed Exo53, which reacted to antisera against exoenzyme S. A histidine-tagged derivative of recombinant Exo53 possessed approximately 0.2% of the ADP-ribosyltransferase activity of recombinant ExoS. Inactivation of exoT in an allelic-replacement strain resulted in an Exo53-deficient phenotype without modifying the expression of ExoS. These studies prove that the 53- and 49-kDa forms of exoenzyme S are encoded by separate genes. In addition, this is the first report of the factor-activating-exoenzyme-S-dependent ADP-ribosyltransferase activity of the 53-kDa form of exoenzyme S.  相似文献   

12.
Pseudomonas aeruginosa delivers exoenzyme S (ExoS) into the intracellular compartment of eukaryotic cells via a type III secretion pathway. Intracellular delivery of ExoS is cytotoxic for eukaryotic cells and has been shown to ADP-ribosylate Ras in vivo and uncouple a Ras-mediated signal transduction pathway. Functional mapping has localized the FAS-dependent ADP-ribosyltransferase domain to the carboxyl-terminus of ExoS. A transient transfection system was used to examine cellular responses to the amino-terminal 234 amino acids of ExoS (DeltaC234). Intracellular expression of DeltaC234 elicited the rounding of Chinese hamster ovary (CHO) cells and the disruption of actin filaments in a dose-dependent manner. Expression of DeltaC234 did not inhibit the expression of two independent reporter proteins, GFP and luciferase, or induce trypan blue uptake, which indicated that expression of DeltaC234 was not cytotoxic to CHO cells. Carboxyl-terminal deletion proteins of DeltaC234 were less efficient in the elicitation of CHO cell rounding than DeltaC234. Cytoskeleton rearrangement elicited by DeltaC234 was blocked and reversed by the addition of cytotoxic necrotizing factor 1 (CNF-1). CNF-1 catalyses the deamidation of Gln-63 of members of the Rho subfamily of small-molecular-weight GTP-binding proteins, resulting in protein activation. This implies a role for small-molecular-weight GTP-binding proteins in the disruption of actin by DeltaC234. Together, these data identify ExoS as a cytotoxin that possesses two functional domains. Intracellular expression of the amino-terminal domain of ExoS elicits the disruption of actin, while expression of the carboxyl-terminal domain of ExoS possesses FAS-dependent ADP-ribosyltransferase activity and is cytotoxic to eukaryotic cells.  相似文献   

13.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen. One of its major toxins, ExoS, is translocated into eukaryotic cells by a type III secretion pathway. ExoS is a dual function enzyme that affects two different Ras-related GTP binding proteins. The C-terminus inactivates Ras through ADP ribosylation, while the N-terminus inactivates Rho proteins through its GTPase activating protein (GAP) activity. Here we have determined the three-dimensional structure of a complex between Rac and the GAP domain of ExoS in the presence of GDP and AlF3. Composed of approximately 130 residues, this ExoS domain is the smallest GAP hitherto described. The GAP domain of ExoS is an all-helical protein with no obvious structural homology, and thus no recognizable evolutionary relationship, with the eukaryotic RhoGAP or RasGAP fold. Similar to other GAPs, ExoS downregulates Rac using an arginine finger to stabilize the transition state of the GTPase reaction, but the details of the ExoS-Rac interaction are unique. Considering the intrinsic resistance of P. aeruginosa to antibiotics, this might open up a new avenue towards blocking its pathogenicity.  相似文献   

14.
The virulence of the opportunistic pathogen Pseudomonas aeruginosa (Pa) is in part mediated by the type III secretion (TTS) of bacterial proteins into eukaryotic hosts. Exoenzyme S (ExoS) is a bifunctional Pa TTS effector protein, with GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) activities. Known cellular substrates of TTS-translocated ExoS (TTS-ExoS) ADPRT activity include proteins in the Ras superfamily and ERM family proteins. This study describes the ADP-ribosylation of a non-G-protein substrate of TTS-ExoS, cyclophilin A (CpA), a peptidyl-prolyl isomerase (PPIase). Four novel 17 kDa proteins (pI 6.5-6.8) were recognized in a proteomic screen of lysates of human epithelial cells that had been exposed to ExoS-producing Pa, but not an isogenic non-ExoS producing strain. The proteins were identified as isoforms of CpA using MALDI-TOF mass spectrometry and confirmed by Western blotting. Mutagenesis analysis identified arginine 55 and 69 of CpA as sites of ExoS ADP-ribosylation. Examination of the effect of ExoS ADP-ribosylation on CpA function found a moderate (19%) decrease in prolyl isomerization of a Xaa-Pro containing peptides. In comparison, GST-CpA co-immunoprecipitation studies found ExoS ADP-ribosylation of CpA to efficiently inhibit CpA binding to calcineurin/PP2B phosphatase. Our results support that ExoS ADP-ribosylates and affects the function of the cytosolic protein, CpA, with the predominant functional effect relating to interference of CpA-cellular protein interactions.  相似文献   

15.
Exoenzyme S (ExoS) is an ADP-ribosyltransferase secreted by the opportunistic pathogen Pseudomonas aeruginosa . The amino-terminal half of ExoS exhibits homology to the YopE cytotoxin of pathogenic Yersinia . Recently, YopE was found to be translocated into the host cell by a bacteria–cell contact-dependent mechanism involving the ysc -encoded type III secretion system. By using an approach in which exoS was expressed in different strains of Yersinia , including secretion and translocation mutants, we could demonstrate that ExoS was secreted and translocated into HeLa cells by a similar mechanism to that described previously for YopE. Similarly to YopE, the presence of ExoS in the host cell elicited a cytotoxic response, correlating with disruption of the actin microfilament structure. A similar cytotoxic response was also induced by a mutated form of ExoS with a more than 2000-fold reduced ADP-ribosyltransferase activity. However, the enzymatically active ExoS elicited a more definite rounding up of the HeLa cells, which also correlated with decreased viability of the cells after prolonged infection compared with cells infected with strains expressing mutated ExoS or YopE. This suggests that ExoS can act through two different mechanisms on the host cell. The expression of ExoS by Yersinia also mediated an anti-phagocytic effect on macrophages. In addition, we present evidence that extracellularly located P. aeruginosa is able to target ExoS into eukaryotic cells. Taken together, our data suggest that P. aeruginosa , by analogy with Yersinia , targets virulence proteins into the eukaryotic cytosol via a type III secretion-dependent mechanism as part of an anti-phagocytic strategy.  相似文献   

16.
ExoS and ExoT are bi-functional type-III cytotoxins of Pseudomonas aeruginosa that share 76% primary amino acid homology and contain N-terminal RhoGAP domains and C-terminal ADP-ribosylation domains. The Rho GAP activities of ExoS and ExoT appear to be biochemically and biologically identical, targeting Rho, Rac, and Cdc42. Expression of the RhoGAP domain in mammalian cells results in the disruption of the actin cytoskeleton and interference of phagocytosis. Expression of the ADP-ribosyltransferase domain of ExoS elicits a cytotoxic phenotype in cultured cells, while expression of ExoT appears to interfere with host cell phagocytic activity. Recent studies showed that ExoS and ExoT ADP-ribosylate different substrates. While ExoS has poly-substrate specificity and can ADP-ribosylate numerous host proteins, ExoT ADP-ribosylates a more restricted subset of host proteins including the Crk proteins. Protein modeling predicts that electrostatic interactions contribute to the substrate specificity of the ADP-ribosyltransferase domains of ExoS and ExoT.  相似文献   

17.
Mono-ADP-ribosylation, a post-translational modification in which the ADP-ribose moiety of NAD is transferred to an acceptor protein, is catalyzed by a family of amino acid-specific ADP-ribosyltransferases. ADP-ribosyltransferase 5 (ART5), a murine transferase originally isolated from Yac-1 lymphoma cells, differed in properties from previously identified eukaryotic transferases in that it exhibited significant NAD glycohydrolase (NADase) activity. To investigate the mechanism of regulation of transferase and NADase activities, ART5 was synthesized as a FLAG fusion protein in Escherichia coli. Agmatine was used as the ADP-ribose acceptor to quantify transferase activity. ART5 was found to be primarily an NADase at 10 microM NAD, whereas at higher NAD concentrations (1 mM), after some delay, transferase activity increased, whereas NADase activity fell. This change in catalytic activity was correlated with auto-ADP-ribosylation and occurred in a time- and NAD concentration-dependent manner. Based on the change in mobility of auto-ADP-ribosylated ART5 by SDS-polyacrylamide gel electrophoresis, the modification appeared to be stoichiometric and resulted in the addition of at least two ADP-ribose moieties. Auto-ADP-ribosylated ART5 isolated after incubation with NAD was primarily a transferase. These findings suggest that auto-ADP-ribosylation of ART5 was stoichiometric, resulted in at least two modifications and converted ART5 from an NADase to a transferase, and could be one mechanism for regulating enzyme activity.  相似文献   

18.
The mosquitocidal toxin (MTX) from Bacillus sphaericus SSII-1 is a approximately 97-kDa protein sharing sequence homology within the N terminus with the catalytic domains of various bacterial ADP-ribosyltransferases. Here we studied the proteolytic activation of the ADP-ribosyltransferase activity of MTX. Chymotrypsin treatment of the 97-kDa MTX holotoxin (MTX(30-870)) results in a 70-kDa putative binding component (MTX(265-870)) and a 27-kDa enzyme component (MTX(30-264)), possessing ADP-ribosyltransferase activity. Chymotryptic cleavage of an N-terminal 32-kDa fragment of MTX (MTX(30-308)) also yields MTX(30-264), but the resulting ADP-ribosyltransferase activity is much greater than that of the processed MTX(30-870). Kinetic studies revealed a K(m) NAD value of 45 microm for the processed 32-kDa MTX fragment, and a K(m) NAD value of 1300 microm for the processed holotoxin. Moreover, the k(cat) value for the activated MTX(30-308) fragment was about 10-fold higher than that for the activated holotoxin (MTX(30-870)). Precipitation analysis showed that the 70-kDa proteolytic fragment of MTX remains noncovalently bound to the N-terminal 27-kDa fragment, thereby inhibiting ADP-ribosyltransferase and NAD glycohydrolase activities. Glu(197) of MTX(30-264) was identified as the "catalytic" glutamate that is conserved in all ADP-ribosyltransferases. Whereas mutated MTX(30-264)E197Q has neither ADP-ribosyltransferase nor NAD glycohydrolase activity, mutated MTX(30-264)E195Q possesses glycohydrolase activity but not transferase activity. Transfection of HeLa cells with a vector encoding a fusion protein of MTX(30-264) with a green fluorescent protein led to cytotoxic effects characterized by cell rounding and formation of filopodia-like protrusions. These cytotoxic effects were not observed with the catalytically inactive MTX(30-264)E197Q mutant, indicating that the MTX enzyme activity is essential for the cytotoxicity in mammalian cells.  相似文献   

19.
One virulence strategy used by the opportunistic pathogen Pseudomonas aeruginosa is to target toxic proteins into eukaryotic cells by a type III secretion mechanism. Two of these proteins, ExoS and ExoT, show 75% homology on amino acid level. However, compared with ExoS, ExoT exhibits highly reduced ADP-ribosylating activity and the role of ExoT in pathogenesis is poorly understood. To study the biological effect of ExoT, we used a strategy by which ExoT was delivered into host cells by the heterologous type III secretion system of Yersinia pseudotuberculosis . ExoT was found to induce a rounded cell morphology and to mediate disruption of actin microfilaments, similar to that induced by an ADP-ribosylation defective ExoS (E381A) and the related cytotoxin YopE of Y. pseudotuberculosis . In contrast to ExoS, ExoT had no major effect on cell viability and did not modify or inactivate Ras by ADP-ribosylation in vivo . However, similar to ExoS and YopE, ExoT exhibited GAP (GTPase activating protein) activity on RhoA GTPase in vitro . Interestingly, ExoT(R149K), deficient for GAP activity, still caused a morphological change of HeLa cells. Based on our findings, we suggest that the ADP-ribosylating activity of ExoT target another, as yet unidentified, host protein that is distinct from Ras.  相似文献   

20.
The Helicobacter pylori CagA protein induces profound morphological changes in the host cytoskeleton and cell scattering, but the signalling involved is poorly understood. Pseudomonas aeruginosa also affects host actin cytoskeleton in a variety of ways by injecting the ExoS and ExoT toxins which encode N-terminal GTPase activating protein and C-terminal ADP-ribosyltransferase (ADPRT) activities. In this study we developed a novel coinfection assay to gain new insights into CagA effector protein functions. We found that P. aeruginosa injecting either ExoT or ExoS efficiently prevented the H. pylori-induced scattering phenotype. Both the Rho-GAP and the ADPRT domains of ExoS were needed to block the H. pylori-induced actin cytoskeletal rearrangements, whereas either domain of ExoT was sufficient for this activity. This strategy revealed common pathways subverted by different pathogens, and aided in the definition of signalling cascades that control the CagA-mediated cell scattering and elongation. We identified Crk adapter proteins, Rac1 and H-Ras, but not RhoA or Cdc42, which are the ExoS and/or ExoT targets, as crucial components of the CagA-induced phenotype. In addition, we show that ADP-ribosylation of CrkII by ExoT blocks phosphorylation of CrkII at Y-221, which is also important for the CagA-induced signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号