首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent data suggests that neurons expressing the long form of the leptin receptor form at least two distinct groups within the caudal nucleus of the solitary tract (NTS): a group within the lateral NTS (Slt) and one within the medial (Sm) and gelantinosa (Sg) NTS. Discrete injections of leptin into Sm and Sg, a region that receives chemoreceptor input, elicit increases in arterial pressure (AP) and renal sympathetic nerve activity (RSNA). However, the effect of microinjections of leptin into Slt, a region that receives baroreceptor input is unknown. Experiments were done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar or Zucker obese rat to determine leptin's effect in Slt on heart rate (HR), AP and RSNA during electrical stimulation of the aortic depressor nerve (ADN). Depressor sites within Slt were first identified by the microinjection of l-glutamate (Glu; 0.25 M; 10 nl) followed by leptin microinjections. In the Wistar rat leptin microinjection (50 ng; 20 nl) into depressor sites within the lateral Slt elicited increases in HR and RSNA, but no changes in AP. Additionally, leptin injections into Slt prior to Glu injections at the same site or to stimulation of the ADN were found to attenuate the decreases in HR, AP and RSNA to both the Glu injection and ADN stimulation. In Zucker obese rats, leptin injections into NTS depressor sites did not elicit cardiovascular responses, nor altered the cardiovascular responses elicited by stimulation of ADN. Those data suggest that leptin acts at the level of NTS to alter the activity of neurons that mediate the cardiovascular responses to activation of the aortic baroreceptor reflex.  相似文献   

2.
The effects of sodium deprivation for 10 d, a period sufficient to induce sodium appetite, on gustatory nerve discharges in rats were determined. Chorda tympani responses to concentration series of sodium chloride, sucrose, hydrochloric acid, and quinine hydrochloride were recorded and analyzed without the experimenter knowing the animal's deprivation condition. After deprivation, both whole nerve and single nerve fiber responses to sodium chloride were smaller; NaCl-best fibers, those more responsive to sodium chloride than to sucrose, hydrochloric acid, or quinine, were most affected. Thresholds had not changed; however, slopes of the stimulus-response functions for sodium chloride were lowered. Comparable changes in responses to the other stimuli did not occur. These results were discussed with respect to a possible relationship between changes in sodium chloride responsivity and changes in sodium intake, differences between methods of inducing sodium appetite, coding of taste quality and intensity, and mechanisms which might effect the responsivity change.  相似文献   

3.
Calcium-deprived rats develop a compensatory appetite for substances that contain calcium. To investigate the role of gustatory factors in calcium appetite, we recorded the extracellular activity of single neurons in the nucleus of the solitary tract of calcium-deprived and replete rats. The activity evoked by a broad array of taste stimuli was examined in 51 neurons from replete rats and 47 neurons from calcium-deprived rats. There were no differences between the groups in the responses of all neurons combined. However, neurons with sugar-oriented response profiles gave significantly larger responses to 3, 10, and 100 mM CaCl(2) in the calcium-deprived group than did corresponding cells in the replete group. This difference in taste-evoked responding may underlie an increase in the palatability of CaCl(2) and, in turn, contribute to the expression of calcium appetite.  相似文献   

4.
In experiments on conscious rats it was found that preliminary microinjection of 100 nl 100 microM glutamic acid to the rostral commissural part of the solitary tract nucleus or to the caudal ventrolateral medulla increased a rise in colonic temperature induced by systemically applied endotoxin (3 microg/kg Escherichia coli lipopolysaccharide, i.p.) as compared to animals with intrabulbar injection of vehicle (control group). Preliminary microinjection of glutamate to the caudal commissural part of the solitary tract nucleus levelled the endotoxin-induced temperature response. After glutamate treatment of the caudal ventrolateral medulla there was a significant decrease in the noradrenaline content and decrease in the adrenaline level in the caudal (not significant) and rostral ventrolateral medulla (significant), as well as a small rise in noradrenergic activity at the solitary tract nucleus as compared to control animals. The post-mortem measurement of the optical density of brainstem tissues revealed its significant attenuation at the solitary tract nucleus and caudal ventrolateral medulla after glutamate as compared with these structures after vehicle. The involvement of monoaminergic systems of both structures under study in the initiation and control of temperature responses during endotoxemia is suggested.  相似文献   

5.
Previous studies have demonstrated that microinjection of baclofen, a GABA(B) receptor agonist, into the nucleus of the solitary tract (NTS) results in an enhanced pressor response in hypertensive (HT) rats compared with normotensive (NT) rats, suggesting a possible alteration in the responses of neurons in this area to activation of GABA(B) receptors. The following studies were designed to determine whether HT alters the sensitivity of neurons in the NTS to GABA receptor agonists. Sham-operated NT and unilateral nephrectomized, renal-wrap HT Sprague-Dawley rats were anesthetized, and the responses of NTS neurons receiving aortic nerve (AN) afferent inputs to iontophoretic application of GABA, the GABA(A) receptor agonist muscimol, and the GABA(B) agonist baclofen were examined. The AN input was classified as monosynaptic (MSN) if the cell responded to each of two stimuli separated by 5 ms with an action potential. If the cell did not respond, the input was considered polysynaptic (PSN). In MSNs, inhibition of AN-evoked discharge by GABA was not altered in 1 wk of HT but was reduced in 4 wk of HT, whereas in PSNs, sensitivity to GABA was reduced at 1 and 4 wk of HT. In HT rats, inhibition of AN-evoked discharge by baclofen was enhanced in MSNs, but not in PSNs, after 1 and 4 wk of HT, whereas inhibition by muscimol was reduced in MSNs and PSNs at 1 and 4 wk of HT. Changes in sensitivity to muscimol and baclofen within MSNs were the same whether the MSN received a slowly or a rapidly conducted AN afferent input. The results demonstrate that early in HT the sensitivity of NTS neurons to inhibitory amino acids is altered and that these changes are maintained for > or =4 wk. The alterations are dependent on the subtype of GABA receptor being activated and whether the neuron receives a mono- or polysynaptic baroreceptor afferent input.  相似文献   

6.
This study investigated whether changes in GABA-mediated neurotransmission within the nucleus of the solitary tract (NTS) contribute to the changes in breathing (resting ventilation and the acute HVR) that occur following exposure to chronic hypoxia (CH). Rats were exposed to 9 days of hypobaric hypoxia (0.5 atm) and then subjected to acute hypoxic breathing trials before and after bilateral microinjections of GABA, bicuculline (a GABAA-receptor antagonist), or bicuculline plus CGP-35348 (a GABAB receptor antagonist) into the caudal regions of the NTS. Breathing was measured using whole body plethysmography. CH caused an increase in resting ventilation when the animals were breathing 30% O2 but did not alter ventilation during acute hypoxia (10% O2). GABA alone had no effect on breathing in either the control or chronically hypoxic rats. Bicuculline and bicuculline/CGP had no effect on breathing in control rats. Following CH, bicuculline and bicuculline/CGP reduced minute ventilation (VI) during acute exposure to 30% O2 but had no effect during acute exposure to 10% O2. The bicuculline-induced reduction in VI resulted from a decrease in breathing frequency (fR) and tidal volume (VT). The bicuculline/CGP-induced reduction in VI was due to a decrease in fR with no change in VT. The results suggest that changes in GABA receptor-mediated neurotransmission, within the NTS, are involved in the increase in resting ventilation that occurs following CH.  相似文献   

7.
Regulatory polypeptide leptin, apart from its well-known hypothalamic effects, stimulates ventilation. The present study on anaesthetised rats was undertaken to elucidate the respiratory effects of 10(-10)-10(-4) M leptin microinjected into the solitary tract nucleus, containing a high concentration of leptin receptors. Injections of 10(-8)-10(-4) M leptin induced dose-dependent increase in ventilation, tidal volume and electric activity of inspiratory muscles; 10(-6) M leptin additionally induced a short-term increase in respiratory frequency and a shortening of both inspiratory and expiratory duration. The respiratory responses to leptin is also characterised by appearance of sighs: deep and prolonged inspirations associated with an augmented burst in the activity of the inspiratory muscles and prolonged post-sigh inter-burst interval. The results taken together with evidence of high concentration of specific leptin ObRb-receptor in the solitary tract nucleus suggest involvement of endogenous leptin in the control of breathing via dorsal structures of the respiratory center.  相似文献   

8.
Kang Y  Yan JQ  Huang T 《生理学报》2003,55(3):317-323
应用细胞外记录的电生理学方法,在乌拉坦麻醉的大鼠观察了电损毁双侧杏仁中央核前后脑桥臂旁核味觉神经元对四种基本味觉刺激(即氯化钠、盐酸、奎宁和蔗糖)反应的变化。根据对味觉刺激的优势反应,29个记录的味觉神经元中,有14个NaCl优势、9个HCl优势、3个QH2SO4优势和3个蔗糖优势反应神经元。损毁杏仁中央核明显增强臂旁核味觉神经元对盐酸和硫酸奎宁的反应(P<0.01)。氯化钠优势、盐酸优势和奎宁优势反应神经元对盐酸和硫酸奎宁的反应在电损毁杏仁中央核后也明显增强。在破坏杏仁中央核后,臂旁核味觉神经元对氯化钠和硫酸奎宁苦味的分辨能力降低。以上结果提示,杏仁中央核在大鼠脑桥水平的味觉编码中发挥重要作用,它可能是通过参与对味觉的影响来调节机体的摄食行为。  相似文献   

9.
In acute experiments on urethane-anesthetized rats, the respiratory effects ofmicroinjections of 10(-5), 10(-8) and 10(-10) M gastrin-releasing peptide (GRP) into the solitary tract nucleus were investigated. It was found that microinjections of the neuropeptide induced an increase in tidal volume, amplitude of diaphragm and external intercostal muscles firing activity and in expiratory duration. The most obvious respiratory responses observed when 10(-8) M GRP was used, while 10(-10) M GRP appeared to be sub-threshold and didn't alter the breathing pattern and activity of inspiratory muscles. In some experiments, where the blood pressure and the heart rate was monitored alone with breathing pattern, these parameters did not change after GRP microinjections into the solitary tract nucleus. The obtained data together with particularities of the distribution of GRP receptors in the brainstem suggest the possibility of GRP involvement into the respiratory control mechanisms at the level of solitary tract nucleus.  相似文献   

10.
The efferent connections of the rostral nucleus of the solitary tract (NTS) in the rat were studied by anterograde transport of Phaseolus vulgaris leucoagglutinin. Rostral to the injection site, fibers travel through the rostral parvocellular reticular formation and deflect medially or laterally around the motor trigeminal nucleus, giving off few terminals in these nuclei and terminate in the parabrachial nucleus. Moderate projections to the peritrigeminal zone, including the intertrigeminal nucleus and the dorsal subcoeruleus nucleus, were observed. Caudally to the injection site, dense innervations from the rostral nucleus of the solitary tract were detected in the parvocellular reticular formation ventral and caudal to the injection site and in the intermediate and ventral medullary reticular formation. The rostral central and ventral subdivisions of the NTS up to the level where the nucleus of the solitary tract abuts the fourth ventricle and the hypoglossal nucleus, receive moderate input from the rostral nucleus of the solitary tract. In general, the projections from the rostral nucleus of the solitary tract were bilateral with an ipsilateral predominance. The caudal part of the nucleus of the solitary tract, the dorsal motor nucleus of the vagus and the facial nucleus were not labeled. It is concluded that medullary rNTS projections participate in oral motor behavior and autonomic control of abdominal organs.  相似文献   

11.
Taste-evoked neural responses in the nucleus of the solitary tract (NST) are subject to both excitatory and inhibitory modulation by physiological conditions that influence ingestion. Treatments that induce sodium appetite predominantly reduce NST gustatory responsiveness to sapid stimuli. When sodium appetite is aroused with 10 mg of the diuretic furosemide (Furo), however, NST gustatory neurons exhibit an enhanced responsiveness to NaCl. In addition to inducing a sodium appetite, 10 mg Furo supports a conditioned taste aversion (CTA). A lower, 2-mg dose of Furo induces an equivalent sodium appetite, but not a CTA. To determine whether the anomalous electrophysiological results reflected the adverse effects of the 10-mg dose, we replicated the original experiment but instead used 2 mg of Furo. In chronically prepared, lightly anesthetized rats, the responses of 49 single NST neurons to 12 taste stimuli were recorded after subcutaneous injections of either 2 mg Furo or saline. There was no effect of treatment on NST neural responses to the four standard taste stimuli. In the NaCl concentration series, however, 2 mg Furo evoked significantly higher responses to the two highest concentrations of NaCl. There was no effect of treatment in the sucrose concentration series. Thus, unlike other methods that induce a sodium appetite, Furo increases NST neural responsiveness to NaCl. At least as far as the first central relay, sodium appetite apparently does not depend on specific changes in the sensory neural code for taste.  相似文献   

12.
Du  J; Bradley  RM 《Chemical senses》1998,23(6):683-688
Responses of acutely isolated neurons from the rostral nucleus of the solitary tract (rNST) to GABA receptor agonists and antagonists were investigated using whole-cell recording in current clamp mode. The isolated neurons retain their morphology and can be divided into multipolar, elongate and ovoid cell types. Most rNST neurons (97%), including all three cell types, respond to GABA with membrane hyperpolarization and a reduction in input resistance. The GABA(A) receptor agonist muscimol reduces neuronal input resistance in a concentration-dependent manner, whereas the GABA(B) receptor agonist baclofen had no effect on any of the neurons tested. The GABA and muscimol reversal potentials were both found to be -75 mV Both the GABA competitive antagonist picrotoxin and the GABA(A) receptor antagonist bicuculline block the effect of GABA in a concentration-dependent manner. These results suggest that GABA activates all neurons in the rNST and that inhibitory synaptic activity is important in brainstem processing of gustatory and somatosensory information.   相似文献   

13.
Microinjections of morphin and leu-enkephaline into the solitary tract nucleus of anaesthetised rats induced a dose-dependent decrease in tidal volume and in external intercostal muscle activity. In addition, leu-enkephaline and -endorphine decreased the respiration frequency. The respiratory effects were accompanied by a decrease in the mean blood pressure and heart rate. Naloxone administration exerted an opposite effect. The data obtained suggests an involvement of opioid peptides in respiratory and circulatory control via the solitary tract nucleus.  相似文献   

14.
The responses of 64 neurons in the nucleus of the solitary tract(NST) of the rat were recorded while independently stimulatingthe anterior tongue (AT) and the nasoincisor ducts (NID) withsucrose and NaCl. The time course of this activity has beenanalyzed by averaging the responses (500 ms bins) to each stimulus:receptorsubpopulation combination across neurons. Regardless of thesite of stimulus application, the average time course of theNaCl responses was similar: both peaked rapidly (1.0–1.5s), with a peak/tonic ratio of >2:1. On the other hand, whenthe AT or NID was stimulated with sucrose, the average timecourse of the responses varied. The mean sucrose:NID responserose rapidly (1.0–1.5 s) to its maximum, which was 2.Oxthe magnitude of the tonic response. Sucrose on the anteriortongue elicited a response with a time course that differedfrom all other responses studied: it peaked slowly (3.5–4.0s), and exhibited a peak/tonic ratio of only 1.5:1. In distinctionto what had been observed for peripheral fibers, a finer-grainedanalysis of individual NST responses evoked by stimulating theAT and NID with sucrose revealed minimal evidence for regularbursting.  相似文献   

15.
Taste receptors on the left and right sides of the anterior tongue are innervated by chorda tympani (CT) fibers, which carry taste information to the ipsilateral nucleus of the solitary tract (NST). Although the anterior tongue is essential for taste, patients with unilateral CT nerve damage often report no subjective change in their taste experience. The standing theory that explains the taste constancy is the "release of inhibition", which hypothesizes that within the NST there are inhibitory interactions between inputs from the CT and glossopharyngeal nerves and that the loss of taste information from the CT is compensated by a release of inhibition on the glossopharyngeal nerve input. However, the possibility of compensation by taste input from the other side of the tongue has never been investigated in rodents. We recorded from 95 taste-responsive neurons in the NST and examined their responsiveness to stimulation of the contralateral CT. Forty-six cells were activated, mostly with excitatory responses (42 cells). Activation of NST cells induced by contralateral CT stimulation was blocked by microinjection of lidocaine into the contralateral NST but was not affected by anesthetization of the contralateral parabrachial nuclei (PbN). In addition, the NST cells that were activated by contralateral CT stimulation showed reduced responsiveness to taste stimulation after microinjection of lidocaine into the contralateral NST. These results demonstrate that nearly half of the taste neurons in the NST receive gustatory information from both sides of the tongue. This "cross talk" between bilateral NST may also contribute to the "taste constancy".  相似文献   

16.
In experiments on anaesthetized rats, the neuronal mechanisms underlying processing of the nociceptive information from the colon within the nucleus of the solitary tract were studied. In addition, the role of nitric oxide in these processes was estimated. Analysis of changes in c-fos expression revealed that nociceptive colorectal distension (CRD) resulted in activation of neurons mainly in the medial, commissural, parvicellular and dorsomedial subnuclei of the solitary tract nucleus. Non-noxious CRD evoked in these subdivisions weak phasic excitatory neuronal responses. Under noxious CRD, neurons with phasic (58%) and tonic (42%) responses were revealed. The phasic neuron responses were significantly enhanced in comparison with non-noxious CRD. Inhibition of the neuronal NO-syntheses resulted in significant decrease of neuron responses to noxious CRD and the number of cells with tonic reactions. Therefore, neurons with tonic responses may be directly related to NO-depended processing ofnociceptive information from colon.  相似文献   

17.
18.
19.
Palatable gustatory stimuli promote feeding, whereas gastric distension generally inhibits this behavior. We explored a neural basis for integration of these opposing sensory signals by evaluating the effect of gastric distension on gustatory responses in the parabrachial nucleus (PBN) of anesthetized rats. Sixteen percent of 92 taste cells were coactivated; they responded to independent taste or gastric distension stimulus application. Modulation of taste responses by distension was more prevalent; taste responses declined 37% in response to distension in 25% of the cells and increased by 46% in 10% of cells. Across the whole population, however, the suppressive effect of distension on taste responses was small (6%). The incidence of modulation did not vary as a simple hedonic function of gustatory sensitivity, i.e., similar proportions of sucrose-, citric-acid-, and QHCl-best, but not NaCl-best, neurons were modulated by gastric distension. Coactivated, modulated, and nonmodulated gustatory-responsive cells were intermingled in the gustatory zone of the caudal PBN. The suppression of PBN taste responses by visceral stimulation may reflect a mechanism for satiation and further implicates the PBN in the control of ingestive function.  相似文献   

20.
In anesthetized, spontaneously breathing rats, microinjections of selective agonists of neuropeptide Y (NPY) receptor subtypes were made into the medial region of the caudal nucleus of the solitary tract (NTS) at the level of the area postrema. This region of the rat NTS exhibits very high densities of NPY binding sites. Microinjections of the long C-terminal NPY fragment, NPY(13-36), a selective agonist at Y2 receptors, into the caudal NTS elicited pronounced, dose-related reductions in blood pressure and respiratory minute volume. Moreover, the specific pattern of cardiorespiratory responses elicited by NPY(13-36) was remarkably similar, over approximately the same dosage range, with the cardiorespiratory response pattern elicited by intact NPY. In contrast to the potent NTS-mediated responses evoked by NPY(13-36), similar microinjections conducted with either NPY(26-36), an inactive C-terminal NPY fragment, or [Leu31,Pro34]NPY, a NPY analog with specific agonist properties at Y1 receptors, into the same caudal NTS sites did not appreciably affect cardiorespiratory parameters even at 10-20-fold higher dosages. The present results with selective agonists for NPY receptor subtypes suggest that the depressor responses and reductions in minute volume elicited by microinjections of intact NPY and NPY(13-36) were mediated by Y2 receptors in the caudal NTS, likely distributed at presynaptic sites in the medial region of the subpostremal NTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号