首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of the heterotrophic marine bacterium, Alteromonas espejiana Bal-31 was inhibited in the presence of sucrose, maltose and even glucose, but not with starch. Extracellular alpha-amylase was induced with a lag phase of 2 h in the presence of starch. In contrast, cell growth of the S2a mutant was not affected by the addition of maltose, and starch was ineffective in the induction of extracellular alpha-amylase in this mutant. Activity of extracellular alpha-amylase was induced from the S2a mutant with a 4-h lag phase in the presence of maltose, and the high level of enzyme activity was maintained for at least 24 h. Activity of alpha-amylase induced by both wild type starch and S2a mutant maltose cultures were mainly observed in extracellular locations. This activity could be stopped by tetracycline treatment, indicating that enzyme induction was dependant on gene expression and not on enzyme protein secretory mechanisms. Our results showed that the mutation in S2a changed the growth and the modulation of the specific alpha-amylase in response to carbon nutrients.  相似文献   

2.
The microbial production of alpha-amylase from Bacillus amyloliquefaciens was investigated. The microorganism was grown using media containing glucose or maltose at 37 degrees C and under aerobic conditions in a 16-L fermentor. The alpha-amylase synthesis from maltose was not found to be inducible but was found to be subject to catabolite repression. The maltose uptake rate was observed to be the rate-limiting step compared to the conversion rate of maltose to glucose by intracellular alpha-glucosidase. The alpha-amylase activity achieved with maltose as a substrate was higher than that achieved with glucose. A slower growth rate and a higher cell density were obtained with maltose. The enzyme production pattern depended upon the nutrient composition of the medium.  相似文献   

3.
Two distinct forms of phosphoglucomutase were found in Lactococcus lactis subsp. lactis, strains 19435 and 65.1, growing on maltose: beta-phosphoglucomutase (beta-PGM), which catalyzes the reversible conversion of beta-glucose 1-phosphate to glucose 6-phosphate in the maltose catabolism, and alpha-phosphoglucomutase (alpha-PGM). beta-PGM was purified to more than 90% homogeneity in crude cell extract from maltose-grown lactococci, and polyclonal antisera to the enzyme were prepared. The molecular mass of beta-PGM was estimated by gel filtration to be 28 kDa; its isoelectric point was 4.8. The corresponding values for alpha-PGM were 65 kDa and 4.4, respectively. The expression of both PGM enzymes was investigated under different growth conditions. The specific activity and amount of beta-PGM per milliliter of cell extract increased with time in lactococci grown on maltose, but the enzyme was absent in lactococci grown on glucose, indicating enzyme synthesis to be induced by maltose in the growth medium. When glucose was added to maltose-grown lactococci, both the specific activity and amount of beta-PGM per milliliter of cell extract decreased rapidly. This suggests that synthesis of beta-PGM is repressed by glucose in the medium. Although the specific activity of alpha-PGM did not change during growth on maltose or glucose, lactococcal strain 19435 showed a much higher specific activity of both alpha- and beta-PGM than strain 65.1 when grown on maltose.  相似文献   

4.
Some properties of the inducible α-glucosidase system of Mucor rouxii were investigated. This enzymatic activity was induced after resuspending glucose-grown cells in a maltose-supplemented medium. The wall-bound activity of α-glucosidase was determined by using intact cells in the enzymatic assay; this activity represented from 80 to 90% of the total activity present in the induced cells. The addition of glucose before, or during, the induction period repressed α-glucosidase synthesis. α-Glucosidase induction was tested under aerobic and anaerobic conditions. It was found that the enzyme synthesis and the appearance of wall-bound activity were not affected by changing the gaseous environment. On the other hand, it was observed that anaerobically grown yeast-like cells were much less efficient than aerobic mycelia to develop wall-bound α-glucosidase activity. This could explain earlier observations about the incapacity of M. rouxii to utilize maltose as a substrate for anaerobic growth. This idea was strengthened by the fact that, if an anaerobic culture was induced to develop under a mycelial morphology by adding to the medium the chemical agent EDTA, these cells also acquired the capacity to grow on maltose and concomitantly possessed wall-bound α-glucosidase activity. The relevance of the structure of the cell wall on the capacity of M. rouxii to metabolize maltose is discussed.  相似文献   

5.
6.
The 100000g supernatants from 13-day-old suckling-rat intestinal homogenates contained 43.5% of the total intestinal maltase activity, compared with 7.1% in weaned adult rats aged 40 days. The soluble maltase activity was separated on Sepharose 4B into two quantitatively equal fractions at pH6.0, one containing a maltase with a neutral pH optimum and the other a maltase with an acid pH optimum. The neutral maltase was shown to be a maltase-glucoamylase identical with membrane-bound maltase-glucoamylase in molecular weight, heat-sensitivity, substrate specificity, K(m) for maltose and K(i) for Tris. The soluble enzyme was induced by cortisol, but the ratio of the soluble to bound enzyme fell during induction. Solubility of the neutral maltase was not accounted for by the action of endogenous proteinases under the preparative conditions used. It is postulated that the soluble neutral maltase is a membrane-dissociated form of the bound enzyme and that the relationship between these two forms is modulated by cortisol. The acid maltase generally resembled acid maltase of liver, muscle and kidney. It was shown to be a maltase-glucoamylase with optimal activity at pH3.0, and molecular weight of 136000 by density-gradient centrifugation. At pH3.0 its K(m) for maltose was 1.5mm. It was inhibited by turanose (K(i)=7.5mm) and Tris (K(i)=5.5mm) but not by p-chloromercuribenzoate or EDTA. Some 55% of its activity was destroyed by heating at 50 degrees C for 10min. The acid maltase closely resembled beta-glucuronidase and acid beta-galactosidase in its distribution in the intestine, response to tissue homogenization in various media, and decrease in activity with cortisol treatment and weaning, indicating that it was a typical lysosomal enzyme concentrated in the ileum.  相似文献   

7.
The synthesis of amylolytic enzymes by the maltose not-utilizing Trichoderma viride strain CBS 354.44 requires the presence of starch or dextrins. Several readily utilizable carbon sources such as glucose and glutamic acid were shown to exert a strong catabolite repression which completely inhibited enzyme induction by starch or dextrins.Enzyme synthesis occurs in the exponential and in the stationary growth phase. In the latter, the ratio between saccharifying and dextrinizing enzyme activity is invariably high. In the exponential growth phase this ratio depends on the nature of the inducing substrate. Growth on starch results in an initially high production of dextrinizing activity, the saccharifying one becoming predominant in the course of exponential growth. The latter activity in dextrin DE 30 cultures is predominant from the very beginning. Thus, the amylolytic enzyme system of T. viride consists of at least two different enzymes, the synthesis of each being controlled specifically. The careful regulation of the synthesis of the dextrinizing enzyme is discussed with special reference to the production of non-utilizable maltose by the latter.  相似文献   

8.
K B Li  K Y Chan 《Applied microbiology》1983,46(6):1380-1387
Lactobacillus acidophilus IFO 3532 was found to produce only intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase; EC 3.2.1.20). Maximum enzyme production was obtained in a medium containing 2% maltose as inducer at 37 degrees C and at an initial pH of 6.5. The enzyme was formed in the cytoplasm and accumulated as a large pool during the logarithmic growth phase. Enzyme production was strongly inhibited by 4 microM CuSO4, 40 microM CoCl2, and beef extract; MnSO4 and the presence of proteose peptone and yeast extract in the medium greatly enhanced enzyme production. A 16.6-fold purification of alpha-glucosidase was achieved by (NH4)2SO4 fractionation and DEAE-cellulose column chromatography. The enzyme showed high specificity for maltose. The Km for alpha-p-nitrophenyl-beta-D-glucopyranoside was 11.5 mM, and the Vmax for alpha-p-nitrophenyl-beta-D-glucopyranoside hydrolysis was 12.99 mumol/min per mg of protein. The optimal pH and temperature for enzyme activity were 5.0 and 37 degrees C, respectively. The enzyme activity was inhibited by Hg2+, Cu2+, Ni2+, Zn2+, Ca2+, Co2+, urea, rose bengal, and 2-iodoacetamide, whereas Mn2+, Mg2+, L-cysteine, L-histidine, Tris, and EDTA stimulated enzyme activity. Transglucosylase activity was present in the partially purified enzyme, and isomaltose was the only glucosyltransferase product. Amylase activity in the purified preparation was relatively weak, and no isomaltase activity was detected.  相似文献   

9.
Maltose and lactose transport systems have been used to investigate the action of procaine on insertion and activity of membrane proteins and translocation of exported proteins in Escherichia coli. Procaine mildly inhibited growth on lactose. The level of inhibition was consistent with the small reduction observed in active and facilitated transport functions of the lac permease. However, procaine caused a severe reduction of growth rate on maltose, as well as an inhibition of induction of maltose regulon activities. In both constitutive and inducible strains, the synthesis of both maltose transport activity (malB operon) and amylomaltase activity (malA operon) was inhibited. Coordinate inhibition of soluble and membrane products was not observed with the lac operon. beta-Galactosidase synthesis proceeded normally during growth on procaine, whereas, the appearance of new transport activity was reduced. Regardless of carbon source, procaine specifically inhibited the appearance of ompF protein in the membrane fraction.  相似文献   

10.
The effect of cyclic 3',5'-adenosine monophosphate (cAMP) on the rate of beta-galactosidase biosynthesis was studied in the cells of Escherichia coli M-17 growing in MPB and mineral media with glucose and maltose, i.e. under the conditions of various catabolite repression, as well as upon lac-operon induction by isopropyl-beta-D-galactopyranoside (IPGP). The stimulating action of exogenous cAMP was found only in a medium with salts and glucose. The induction by IPGP was highest during the growth in a medium with glucose and maltose. When the medium contained IPGP, cAMP accelerated the enzyme synthesis in all media, but only at the early growth phases, while cAMP eliminated the effect of IPGP at the stationary phase of growth. The regulation of beta-galactosidase biosynthesis by cAMP demonstrated for the first time that this effect depended on the physiological state of E. coli: the expression of catabolite-sensitive E. coli genes was subject to both positive and negative regulation in one and the same inducible system. The effect exerted by cAMP depended on the nature of a carbon source in the growth medium.  相似文献   

11.
Streptomyces olivaceus 142 produces amylase in the logarithmic phase of growth of the culture. The synthesis of the enzyme is induced by maltose and starch. In the case of maltose the synthesis is induced by a contaminating compound, probably being a higher than maltose polymer of glucose. The synthesis of amylase is negatively controlled by catabolic repression. The level of the activity of the enzyme depends not only on the biosynthesis but also on it proteolytic degradation.  相似文献   

12.
Maltose metabolism during the conversion of transitory (leaf) starch to sucrose requires a 4-alpha-glucanotransferase (EC 2.4.1.25) in the cytosol of leaf cells. This enzyme is called DPE2 because of its similarity to the disproportionating enzyme in plastids (DPE1). DPE1 does not use maltose; it primarily transfers a maltosyl unit from one maltotriose to a second maltotriose to make glucose and maltopentaose. DPE2 is a modular protein consisting of a family 77 glycosyl hydrolase domain, similar to DPE1, but unlike DPE1 the domain is interrupted by an insertion of approximately 150 amino acids as well as an N-terminal extension that consists of two carbohydrate binding modules. Phylogenetic analysis shows that the DPE2-type enzyme is present in a limited but highly diverse group of organisms. Here we show that DPE2 transfers the non-reducing glucosyl unit from maltose to glycogen by a ping-pong mechanism. The forward reaction (consumption of maltose) is specific for the beta-anomer of maltose, while the reverse reaction (production of maltose) is not stereospecific for the acceptor glucose. Additionally, through deletion mutants we show that the glycosyl hydrolase domain alone provides disproportionating activity with a much higher affinity for short maltodextrins than the complete wild-type enzyme, while absence of the carbohydrate binding modules completely abolishes activity with large complex carbohydrates, reflecting the presumed function of DPE2 in vivo.  相似文献   

13.
The influence of the carbon source on alpha-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and acetate. A. oryzae did not grow on galactose as the sole carbon source, but galactose was co-metabolized together with glucose. Relative to that on low glucose concentration (below 10 mg/l), productivity was found to be higher during growth on maltose and maltodextrins, whereas it was lower during growth on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha-amylase, whereas addition of small amounts of glucose resulted in alpha-amylase production. A possible induction by alpha-methyl-D-glucoside during growth on glucose was also investigated, but this compound was not found to be a better inducer of a-amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.  相似文献   

14.
We have previously found that some mammalian tissue homogenates can catalyze a unique transglucosylation from maltose to L-ascorbic acid (AA), resulting in a chemically stable AA derivative, L-ascorbic acid alpha-glucoside (AAG). In the present study, the enzyme responsible for this transglucosylation was isolated from rat intestinal membrane. The formation of AAG was determined by HPLC with an ODS column. The specific activity of AAG-forming enzyme was increased in parallel with that of alpha-glucosidase (maltose hydrolase) during the purification, and two neutral alpha-glucosidases, termed alpha-glucosidases I and II, were purified to apparent homogeneity. Their enzymological properties showed that they corresponded to maltase [EC 3.2.1.20] and sucrase-isomaltase complex [EC 3.2.1.48/10], respectively. Both enzymes could form AAG by splitting only maltose among the disaccharides examined, although alpha-glucosidase I possessed a considerably higher activity than the other enzyme. Both AAG formation and maltose hydrolysis were dependent on incubation temperature with the maximal activity at 60 degrees C, but there was an apparent difference between their pH optima. AAG thus formed could also be hydrolyzed by the purified enzymes. From these results, it is concluded that membrane-bound neutral alpha-glucosidases from rat intestine have site-specific transglucosylase activity to form nonreducing AAG which is distinct from L-ascorbic acid-6-O-alpha-D-glucoside.  相似文献   

15.
The fission yeast Schizosaccharomyces pombe CBS 356 exhibits extracellular maltase activity. This activity may be of commercial interest as it exhibited a low pH optimum (3.5) and a high affinity for maltose (Km of 7.0+/-1.8 mM). N-terminal sequencing of the protein indicates that it is the product of the AGL1 gene. Regulation of this gene occurs via a derepression/repression mechanism. In sugar- or nitrogen-limited chemostat cultures, the specific rate of enzyme production (q(p)) was independent of the nature of the carbon source (i.e. glucose or maltose), but synthesis was partially repressed by high sugar concentrations. Furthermore, q(p) increased linearly with specific growth rate (mu) between 0.04 and 0.10 h(-1). The enzyme is easily mass-produced in aerobic glucose-limited fed-batch cultures, in which the specific growth rate is controlled to prevent alcoholic fermentation. In fed-batch cultures in which biomass concentrations of 83 g L(-1) were attained, the enzyme concentration reached 58,000 Units per liter culture supernatant. Extracellular maltase may be used as a dough additive in order to prevent mechanisms such as maltose-induced glucose efflux and maltose-hypersensitivity that occur in maltose-consuming Saccharomyces cerevisiae.  相似文献   

16.
A large amount of lysosomal acid hydrolases was released into the medium by Tetrahymena pyriformis strain W during growth. An extracellular lysosomal acid alpha-glucosidase has been purified 500-fold with a 41% yield to homogeneity, as judged by polyacrylamide gel electrophoresis. It was found to be a glycoprotein and to consist of a single 110,000-dalton polypeptide chain. The carbohydrate content of the alpha-glucosidase was equivalent to 2.8% of the total protein content, and the oligosaccharide moiety was composed of mannose and N-acetylglucosamine in a molar ratio of 6.7:2. The optimal pHs for hydrolysis of maltose and p-nitrophenyl-alpha-glucopyranoside, maltose, isomaltose, and glycogen were 1.1 mM, 2.5 mM, 33.0 mM, and 18.5 mg/ml, respectively. This purified enzyme appears to have alpha-1,6-glucosidase as well as alpha-1,4-glucosidase activity. Turanose has a noncompetitive inhibitory effect on the hydrolysis of maltose. The antibody raised against Tetrahymena acid alpha-glucosidase inhibited the hydrolysis of all substrates tested. These properties of Tetrahymena acid alpha-glucosidase were found to be similar to those of the human liver lysosomal alpha-glucosidase.  相似文献   

17.
Y Suzuki  T Tsuji    S Abe 《Applied microbiology》1976,32(6):747-752
Production of extracellular maltase was studied with thermophilic Bacillus sp. KP 1035, which was selected as the organism producing the highest levels of maltase. The final enzyme yield was increased by maltose, peptone, and yeast extract but reduced by succinate and fumarate. Maximum enzyme production was achieved at 55 degrees C and at an initial pH of 6.2 to 7.0 on a medium containing 0.3% maltose, 1% peptone, 0.1% meat extract, 0.3% yeast extract, 0.3% KH2PO4, and 0.1% KH2PO4. Maltase was synthesized in cytoplasm and accumulated as a large pool during the logarithmic growth phase, which preceded sporulation. At the end of this phase, the enzyme appeared in the culture broth, and its accumulation increased in parallel with a rise in the extracellular protein level. Maltase was stable for 24 h at 60 degrees C over a pH range of 5.6 to 9.0 and retained 95% of the original activity after treatment for 20 min at 70 degrees C at pH 6.8.  相似文献   

18.
Production of extracellular maltase was studied with thermophilic Bacillus sp. KP 1035, which was selected as the organism producing the highest levels of maltase. The final enzyme yield was increased by maltose, peptone, and yeast extract but reduced by succinate and fumarate. Maximum enzyme production was achieved at 55 degrees C and at an initial pH of 6.2 to 7.0 on a medium containing 0.3% maltose, 1% peptone, 0.1% meat extract, 0.3% yeast extract, 0.3% KH2PO4, and 0.1% KH2PO4. Maltase was synthesized in cytoplasm and accumulated as a large pool during the logarithmic growth phase, which preceded sporulation. At the end of this phase, the enzyme appeared in the culture broth, and its accumulation increased in parallel with a rise in the extracellular protein level. Maltase was stable for 24 h at 60 degrees C over a pH range of 5.6 to 9.0 and retained 95% of the original activity after treatment for 20 min at 70 degrees C at pH 6.8.  相似文献   

19.
The relationship between cell density and the activity of 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP), an enzyme believed to be specific to oligodendroglial cells and myelin in the brain, has been studied in cultured C-6 glioma cells. Over a 12-day period, the specific activity of CNP underwent a 4-fold increase in conjunction with an increase in the cell density (total protein/flask) and a decline in the growth rate of the cultures. In contrast, the specific activity of Na+,K+-ATPase was not influenced by cell density. Experiments with cultures seeded at different initial densities indicated that the increase in CNP activity coincided with the attainment of a specific cell density rather than with the length of time that the cells were maintained in culture. Arrest of cell proliferation in non-confluent C-6 cells by means of thymidine blockade was not sufficient to cause an increase in the activity of CNP; however, removal of serum from the culture medium resulted in a 3-fold induction of the enzyme in the absence of a high degree of cell contact. The induction of CNP in cells maintained in serum-free medium paralleled the development of a series of distinct morphological changes reminiscent of glial differentiation, which occurred within 48 hours after removal of the serum. Inhibition of protein synthesis by cycloheximide prevented the induction of CNP in serum-free cultures. The demonstration that an enhancement of an oligodendroglial characteristic in C-6 glioma cells can be obtained by growing the cells to high density or by removing serum from the medium, provides further support for the suggestion that these cells may be analogous to the glial stem cells present in the developing brain.  相似文献   

20.
Bacillus brevis NRRL B-4389 produced extracellular maltase (alpha-glucosidase; EC 3.2.1.20) only in the presence of short alpha-1,4-glucosidic polymers, such as maltose and maltotriose. An optimum medium was developed; it contained 2.5% maltose, 0.5% nonfat dry milk, 0.4% yeast extract, and 0.01% CaCl(2). The enzyme was produced extracellularly during the logarithmic phase of growth; no cell-bound activity was detected at any time. Partial purification of the maltase was accomplished by using diethylaminoethyl cellulose batch adsorption, ammonium sulfate precipitation, and Sephadex G-200 gel filtration. Maltase, isomaltase (oligo-1,6-glucosidase), and glucosyltransferase activities were purified 20.0-, 19.1-, and 11.5-fold, respectively. Some properties of the partially purified maltase were determined: optimum pH, 6.5; optimum temperature, 48 to 50 degrees C; pH stability range, 5.0 to 7.0; temperature stability range, 0 to 50 degrees C; isoelectric point, pH 5.2; and molecular weight, 52,000. The relative rates of hydrolysis of maltose (G(2)), maltotriose (G(3)), G(4), methyl-alpha-d-maltoside, G(40), dextrin, and isomaltose were 100, 22, 12, 10, 10, 8, and 5%, respectively; the K(m) on maltose was 5.8 mM; d-glucose, p-nitrophenyl-alpha-d-glucoside, and tris (hydroxymethyl) aminomethane were competitive inhibitors; transglucosylase activity of the enzyme on maltose resulted in the synthesis of isomaltose, isomaltotroise, and larger oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号