首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Connexin26 (Cx26) is the major Cx protein expressed in the human mammary gland and is up-regulated during pregnancy while remaining elevated throughout lactation. It is currently unknown if patients with loss-of-function Cx26 mutations that result in hearing loss and skin diseases have a greater susceptibility to impaired breast development. To investigate if Cx26 plays a critical role in mammary gland development and differentiation, a novel Cx26 conditional knockout mouse model was generated by crossing Cx26fl/fl mice with mice expressing Cre under the β-Lactoglobulin promoter. Conditional knockdown of Cx26 from the mammary gland resulted in a dramatic reduction in detectable gap junction plaques confirmed by a significant ∼65-70% reduction in Cx26 mRNA and protein throughout parturition and lactation. Interestingly, this reduction was accompanied by a decrease in mammary gland Cx30 gap junction plaques at parturition, while no change was observed for Cx32 or Cx43. Whole mount, histological and immunofluorescent assessment of breast tissue revealed comparatively normal lobuloalveolar development following pregnancy in the conditionally knockdown mice compared to control mice. In addition, glands from genetically-modified mice were capable of producing milk proteins that were evident in the lumen of alveoli and ducts at similar levels as controls, suggesting normal gland function. Together, our results suggest that low levels of Cx26 expression throughout pregnancy and lactation, and not the physiological surge in Cx26, is sufficient for normal gland development and function.  相似文献   

2.
3.
Connexin43 (Cx43) forms gap junctions that couple the granulosa cells of ovarian follicles. In Cx43 knockout mice, follicle growth is restricted as a result of impaired granulosa cell proliferation. We have used these mice to examine the importance of specific Cx43 phosphorylation sites in follicle growth. Serines at residues 255, 262, 279, and 282 are MAP kinase substrates that, when phosphorylated, reduce junctional conductance. Mutant forms of Cx43 were constructed with these serines replaced with amino acids that cannot be phosphorylated. These mutants were transduced into Cx43 knockout ovarian somatic cells that were combined with wild-type oocytes and grafted into immunocompromised female mice permitting follicle growth in vivo. Despite residues 255 or 262 being mutated to prevent their being phosphorylated, recombinant ovaries constructed with these mutants were able to rescue the null phenotype, restoring complete folliculogenesis. In contrast, Cx43 with serine to alanine mutations at both residues 279 and 282 or at all four residues failed to rescue folliculogenesis; the mutant molecules were largely confined to intracellular sites, with few gap junctions. Using an in vitro proliferation assay, we confirmed a decrease in proliferation of granulosa cells expressing the double mutant construct. These results indicate that Cx43 phosphorylation by MAP kinase at serines 279 and 282 occurs in granulosa cells of early follicles and that this is involved in regulating follicle development.  相似文献   

4.
To clarify the relationship of gap junction formation to phosphorylation of connexin43 (Cx43) in mouse preimplantation embryos, immunofluorescence and Western blot analysis were conducted. Immunofluorescence showed Cx43 positive spots first at the mid-eight-cell stage (6 hr postdivision to the eight-cell stage). The number of spots increased from 6 to 15 hr postdivision to the eight-cell stage. Western blot analysis suggested Cx43 to possibly be present in the nonphosphorylated form at the mid-four-cell stage (6 hr postdivision to the four-cell stage), and phosphorylated Cx43 to increase from the mid-eight-cell stage (6 hr post-division to the eight-cell stage) onward. Dibutyryl cAMP (dbcAMP), a protein kinase A (PKA) activator, added to the culture medium increased the phosphorylation of Cx43 and Cx43 positive spots. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, increased the phosphorylation of Cx43, but decreased Cx43 positive spots. These results suggest that the phosphorylation of Cx43, induced by different protein kinase, leads to a different effect on gap junction formation in mouse preimplantation embryos.  相似文献   

5.
Previous studies of marsupial lactation have shown that the milk-ejection reflex changes in sensitivity, being greater in small mammary glands sucked by small pouch young and lesser in larger glands supplying milk to larger young. The involvement of oxytocin receptors in these changes was examined in the brushtail possum Trichosurus vulpecula. Oxytocin receptors were measured in the mammary glands, uterus, and medial vaginal sacs by radioreceptor assay, using [3H]oxytocin as radioligand. In the mammary gland, a single oxytocin binding site was found with an affinity and receptor concentration of 0.81 +/- 0.41 l/nmol and 10.2 +/- 4.8 pmol/g tissue respectively (SD, 10 possums). Competitive displacement curves with related peptides and analogs showed the following order of specificity: d(CH2)5[Tyr(Me)2,Thr4,Tyr9-NH2]-vasotocin much greater than vasotocin greater than oxytocin = Arg-vasopressin greater than mesotocin greater than [Thr4,Gly7]-oxytocin = Lys-vasopressin greater than [deamino-Pen1, O-methyl-Tyr2, Arg8]-vasopressin greater than isotocin much greater than [d(CH2)5, D-Phe2, Ile4, Ala9-NH2]-AVP. [3H]Oxytocin did not bind to vasopressin receptors in the thoracic aorta. The concentration of oxytocin receptors was very high in small mammary glands (18.6 pmol/g tissue in a 2-g gland) and decreased logarithmically as the size of the mammary gland increased. It is suggested that the changes in the sensitivity of milk ejection to oxytocin is related to the concentration of mammary oxytocin receptors. The presence of oxytocin receptors in both uterus and median vaginal sacs extends previous observations and supports the hypothesis that in marsupial parturition, the uterus and medial vaginal sacs respond as a single functional unit to oxytocin.  相似文献   

6.
BACKGROUND: Connexins are the protein subunits of intercellular gap junction channels. In mammals, they are encoded by a family of at least 15 genes, which show cell-type-specific but overlapping patterns of expression. Mice lacking connexin43 (Cx43) die postnatally from obstruction of the right ventricular outflow tract of the heart. To discriminate between the unique and shared functions of Cx43, Cx40 and Cx32, we generated two 'knock-in' mouse lines, Cx43KI32 and Cx43KI40, in which the coding region of the Cx43 gene was replaced, respectively, by the coding regions of Cx32 or Cx40. RESULTS: Heterozygous mutants were fertile and co-expressed the wild-type and the corresponding recombinant allele in all tissues analyzed. Heterozygous Cx43KI32, but not Cx43KI40, mutant mothers were unable to nourish their pups to weaning age, possibly reflecting a defect in milk ejection. Homozygous mutant males were sterile because of extensive germ-cell deficiency. The ovaries of homozygous Cx43KI32 neonates exhibited all stages of follicular development and ovulation. The hearts of homozygous Cx43KI32 neonates showed mild morphological defects, but the cardiac morphology of homozygous Cx43KI40 neonates was relatively normal. Spontaneous ventricular arrhythmias were observed in most Cx43KI40 and some Cx43KI32 mutant mice, suggesting increased ventricular vulnerability in these mice. CONCLUSIONS: The postnatal lethality of Cx43-deficient mice was rescued in Cx43KI32 or Cx43KI40 mice, indicating that Cx43, Cx40 and Cx32 share at least some vital functions. On the other hand, Cx43KI32 and Cx43KI40 mice differed functionally and morphologically from each other and from wild-type mice. Thus, these connexins also have unique functions.  相似文献   

7.
Abrupt developmental changes occur in structural form and function of connexin (Cx) channels in the mouse mammary gland. Microarray study shows that the principal connexin isoform in epithelial cells during pregnancy is Cx26, up-regulated and persisting from the virgin. After parturition, there is rapid induction of Cx32. In epithelial plasma membranes, size exclusion chromatography reveals that Cx32 organizes initially with Cx26 as heteromeric (Cx26-Cx32) hemichannels and later in heteromeric and homomeric Cx32 channels. Dramatic alterations of connexin channel function following these developmental changes in channel composition are characterized using native channels reconstituted into liposomes. Changes to channel stoichiometry increase the allowable physical size limits of permeant after parturition; the new Cx32 channels are wider than channels containing Cx26. Most remarkably, heteromeric Cx26-Cx32 channels are selectively permeability to adenosine 3',5' cyclic phosphate (cAMP), guanosine 3',5' cyclic phosphate (cGMP), and inositol 1,4,5-triphosphate (IP(3)), whereas homomeric channels are not. Homomeric Cx26 and heteromeric channels with high Cx26/Cx32 stoichiometry are also inhibited by taurine, an osmolyte playing a key role in milk protein synthesis. Taurine effect is reduced where heteromeric channels contain Cx32 > Cx26 and eliminated when channels contain only Cx32. Connexin channel stoichiometry, permeability, and chemical gating character change in precisely the desired fashion after parturition to maximize molecular and electrical coupling to support coordinated milk secretion.  相似文献   

8.
《The Journal of cell biology》1995,131(5):1193-1203
Intercellular gap junction channels are thought to form when oligomers of connexins from one cell (connexons) register and pair with connexons from a neighboring cell en route to forming tightly packed arrays (plaques). In the current study we used the rat mammary BICR-M1Rk tumor cell line to examine the trafficking, maturation, and kinetics of connexin43 (Cx43). Cx43 was conclusively shown to reside in the Golgi apparatus in addition to sites of cell-cell apposition in these cells and in normal rat kidney cells. Brefeldin A (BFA) blocked Cx43 trafficking to the surface of the mammary cells and also prevented phosphorylation of the 42-kD form of Cx43 to 44- and 46-kD species. However, phosphorylation of Cx43 occurred in the presence of BFA while it was still a resident of the ER or Golgi apparatus yielding a 43-kD form of Cx43. Moreover, the 42- and 43-kD forms of Cx43 trapped in the ER/Golgi compartment were available for gap junction assembly upon the removal of BFA. Mammary cells treated with BFA for 6 h lost preexisting gap junction "plaques," as well as the 44- and 46-kD forms of Cx43 and functional coupling. These events were reversible 1 h after the removal of BFA and not dependent on protein synthesis. In summary, we provide strong evidence that in BICR-M1Rk tumor cells: (a) Cx43 is transiently phosphorylated in the ER/Golgi apparatus, (b) Cx43 trapped in the ER/Golgi compartment is not subject to rapid degradation and is available for the assembly of new gap junction channels upon the removal of BFA, (c) the rapid turnover of gap junction plaques is correlated with the loss of the 44- and 46-kD forms of Cx43.  相似文献   

9.
Mammary glands, like other skin appendages such as hair follicles and teeth, develop from the surface epithelium and underlying mesenchyme; however, the molecular controls of embryonic mammary development are largely unknown. We find that activation of the canonical WNT/beta-catenin signaling pathway in the embryonic mouse mammary region coincides with initiation of mammary morphogenesis, and that WNT pathway activity subsequently localizes to mammary placodes and buds. Several Wnt genes are broadly expressed in the surface epithelium at the time of mammary initiation, and expression of additional Wnt and WNT pathway genes localizes to the mammary lines and placodes as they develop. Embryos cultured in medium containing WNT3A or the WNT pathway activator lithium chloride (LiCl) display accelerated formation of expanded placodes, and LiCl induces the formation of ectopic placode-like structures that show elevated expression of the placode marker Wnt10b. Conversely, expression of the secreted WNT inhibitor Dickkopf 1 in transgenic embryo surface epithelium in vivo completely blocks mammary placode formation and prevents localized expression of all mammary placode markers tested. These data indicate that WNT signaling promotes placode development and is required for initiation of mammary gland morphogenesis. WNT signals play similar roles in hair follicle formation and thus may be broadly required for induction of skin appendage morphogenesis.  相似文献   

10.
Oligonucleotide microarray analysis uniquely shows that several members of the connexin family of gap junction proteins are expressed by the epithelium during mouse mammary gland development. Connexin 26 (Cx26) is present throughout pregnancy and lactation, is then undetectable shortly after weaning, but reappears during involution. Additionally, Cx30 is abundant in late-pregnant and early lactating gland epithelium. From mid-pregnancy into early lactation, Cx26 and Cx30 co-localize in junctional plaques between epithelial cells, forming hemichannels of mixed connexin content. Microarray analysis also shows Cx32 is developmentally restricted to parturition, suggesting that specific modification of gap junction channel composition and/or intercellular communication pathways occurs at parturition. Specifically, heteromeric channels of all pairwise combinations are formed when these connexins are expressed within the same cells. Of these hemichannels, Cx26/Cx32 pores are increasingly sensitive to closure by taurine (an osmolyte implicated in milk protein synthesis) with increasing Cx26 content. In contrast, physiological taurine concentrations have no effect on Cx26/Cx30 and Cx30/Cx32 channel activity. Such changes in connexin expression and channel composition and their chemical modulation are discussed in relation to the various stages of mammary gland development in the adult mouse. This work was supported by grants GM36044 and GM61406 from the NIH to A.L. Harris and by generous funding from Breakthrough Breast Cancer Research to B. Gusterson.  相似文献   

11.
Oculodentodigital dysplasia (ODDD) is a rare developmental disease resulting from germline mutations in the GJA1 gene that encodes the gap junction protein connexin43 (Cx43). In addition to the classical ODDD symptoms that affect the eyes, teeth, bone and digits, in some cases ODDD patients have reported bladder impairments. Thus, we chose to characterize the bladder in mutant mouse models of ODDD that harbor two distinct Cx43 mutations, G60S and I130T. Histological assessment revealed no difference in bladder detrusor wall thickness in mutant compared to littermate control mice. The overall localization of Cx43 in the lamina propria and detrusor also appeared to be similar in the bladders of mutant mice with the exception that the G60S mice had more instances of intracellular Cx43. However, both mutant mouse lines exhibited a significant reduction in the phosphorylated P1 and P2 isoforms of Cx43, while only the I130T mice exhibited a reduction in total Cx43 levels. Interestingly, Cx26 levels and distribution were not altered in mutant mice as it was localized to intracellular compartments and restricted to the basal cell layers of the urothelium. Our studies suggest that these two distinct genetically modified mouse models of ODDD probably mimic patients who lack bladder defects or other factors, such as aging or co-morbidities, are necessary to reveal a bladder phenotype.  相似文献   

12.
Phosphorylation affects several biological functions of connexin43 (Cx43), although its role on Cx43-mediated inhibition of DNA synthesis is not known. Previous studies showed increased Cx43 phosphorylation on serine in response to growth factor stimulation of cardiomyocytes, mediated by protein kinase C-epsilon (PKCε). Here we report that activation of PKCε is also necessary for stimulation of cardiomyocyte DNA synthesis and mitosis. We have investigated the participation of specific serine residues that are putative PKC targets in producing phosphorylated Cx43 species and also in regulating DNA synthesis in cardiomyocytes. Interference with the PKC signaling system and/or the phosphorylation of specific amino-acids of Cx43 may allow regulation of the mitogenic response.  相似文献   

13.
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions.  相似文献   

14.
Mammary myoepithelial cells are specialized smooth musclelike epithelial cells that express the smooth muscle actin isoform: smooth muscle alpha-actin (ACTA2). These cells contract in response to oxytocin to generate the contractile force required for milk ejection during lactation. It is believed that ACTA2 contributes to myoepithelial contractile force generation; however, this hypothesis has not been directly tested. To evaluate the contribution of ACTA2 to mammary myoepithelial cell contraction, Acta2 null mice were utilized and milk ejection and myoepithelial cell contractile force generation were evaluated. Pups suckling on Acta2 null dams had a significant reduction in weight gain starting immediately postbirth. Cross-fostering demonstrated the lactation defect is with the Acta2 null dams. Carmine alum whole mounts and conventional histology revealed no underlying structural defects in Acta2 null mammary glands that could account for the lactation defect. In addition, myoepithelial cell formation and organization appeared normal in Acta2 null lactating mammary glands as evaluated using an Acta2 promoter-GFP transgene or phalloidin staining to visualize myoepithelial cells. However, mammary myoepithelial cell contraction in response to oxytocin was significantly reduced in isolated Acta2 null lactating mammary glands and in in vivo studies using Acta2 null lactating dams. These results demonstrate that lack of ACTA2 expression impairs mammary myoepithelial cell contraction and milk ejection and suggests that ACTA2 expression in mammary myoepithelial cells has the functional consequence of enhancing contractile force generation required for milk ejection.  相似文献   

15.
16.
Phorbol esters (e.g., TPA) activate protein kinase C (PKC), increase connexin43 (Cx43) phosphorylation, and decrease cell-cell communication via gap junctions in many cell types. We asked whether PKC directly phosphorylates and regulates Cx43. Rat epithelial T51B cells metabolically labeled with (32)P(i) yielded two-dimensional phosphotryptic maps of Cx43 with several phosphopeptides that increased in intensity upon TPA treatment. One of these peptides comigrated with the major phosphopeptide observed after PKC phosphorylation of immunoaffinity-purified Cx43. Purification of this comigrating peptide and subsequent sequencing indicated that the phosphorylated serine was residue 368. To pursue the functional importance of phosphorylation at this site, fibroblasts from Cx43(-/-) mice were transfected with either wild-type (Cx43wt) or mutant Cx43 (Cx43-S368A). Intercellular dye transfer studies revealed different responses to TPA and were followed by single channel analyses. TPA stimulation of T51B cells or Cx43wt-transfected fibroblasts caused a large increase in the relative frequency of approximately 50-pS channel events and a concomitant loss of approximately 100-pS channel events. This change to approximately 50-pS events was absent when cells transfected with Cx43-S368A were treated with TPA. These data strongly suggest that PKC directly phosphorylates Cx43 on S368 in vivo, which results in a change in single channel behavior that contributes to a decrease in intercellular communication.  相似文献   

17.
Yogo K  Ogawa T  Akiyama M  Ishida N  Takeya T 《FEBS letters》2002,531(2):132-136
The gap junctional intercellular communication mediated by Cx43 plays indispensable roles in both germ line development and postnatal folliculogenesis. In this study, we focused on the effect of follicle-stimulating hormone (FSH) on the Cx43 protein in rat primary granulosa cells and found that FSH stimulation elevated the phosphorylation in addition to the protein level of Cx43. Serine residues in the carboxyl-terminal region were exclusively phosphorylated in this system and we identified Ser365, Ser368, Ser369 and Ser373 as major phosphorylation sites by FSH stimulation. A Cx43 variant containing mutations at all these serine residues was found to severely reduce dye transfer activity when assayed in HeLa cells. The present study revealed a novel regulatory mechanism of Cx43-mediated gap junctional intercellular communication through phosphorylation in the carboxyl-terminus.  相似文献   

18.
Gap junctions in AII amacrine cells of mammalian retina participate in the coordination of the rod and cone signaling pathway involved in visual adaptation. Upon stimulation by light, released dopamine binds to D(1) receptors on AII amacrine cells leading to increased intracellular cAMP (cyclic adenosine monophosphate) levels. AII amacrine cells express the gap junctional protein connexin36 (Cx36). Phosphorylation of Cx36 has been hypothesized to regulate gap junctional activity of AII amacrine cells. However, until now in vivo phosphorylation of Cx36 has not been reported. Indeed, it had been concluded that Cx36 in bovine retina is not phosphorylated, but in vitro phosphorylation for Cx35, the bass ortholog of Cx36, had been shown. To clarify this experimental discrepancy, we examined protein kinase A (PKA)-induced phosphorylation of Cx36 in mouse retina as a possible mechanism to modulate the extent of gap junctional coupling. The cytoplasmic domains of Cx36 and the total Cx36 protein were phosphorylated in vitro by PKA. Mass spectroscopy revealed that all four possible PKA consensus motifs were phosphorylated; however, domains point mutated at the sites in question showed a prevalent usage of Ser-110 and Ser-293. Additionally, we demonstrated that Cx36 was phosphorylated in cultured mouse retina. Furthermore, activation of PKA increased the level of phosphorylation of Cx36. cAMP-stimulated, PKA-mediated phosphorylation of Cx36 protein was accompanied by a decrease of tracer coupling between AII amacrine cells. Our results link increased phosphorylation of Cx36 to down-regulation of permeability through gap junction channels mediating light adaptation in the retina.  相似文献   

19.
20.
We have shown that the cellular mechanisms of the mammary gland can be used to produce a phosphorylated form of a normally unphosphorylated milk protein. This was achieved by the insertion of a beta-casein DNA sequence coding for a group of mammary gland casein kinase recognition sites into ovine beta-lactoglobulin. Transgenic mice carrying this modified gene were generated and lactating females were shown to produce a novel beta-lactoglobulin in their milk. The infrared spectrum, reactivity to antiphosphoserine antibody and reduction of electrophoretic mobility on treatment with alkaline phosphatase showed that the novel protein recovered from the milk whey (serum) was phosphorylated and molecular mass determination by mass spectrometry was consistent with the phosphorylation of one or two residues. A similar level of phosphorylation was measured by quantitative infrared spectroscopy. Centrifugation of the milk to pellet the casein micelles showed that most of the phosphorylated beta-lactoglobulin was in the whey and hence not incorporated into casein micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号