首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procollagen and collagen were isolated from the culture medium and cell layer of line TSD4 (obtained from mouse teratocarcinoma OTT6050). SDS-polyacrylamide gel electrophoresis of the highly purified procollagen fraction demonstrated that the fraction is composed of θ chains (150,000 daltons), pro α chains (130,000 daltons), and α chains (100,000 daltons). Limited pepsin digestion of this fraction yielded a single species of collagen molecules having a chain composition (α1)3, as did collagen isolated from the cell layer. Each α1 chain appears to be slightly larger than α1 chains from calf or human type I and type III collagen. Amino acid analysis and cyanogen bromide peptide profiles of pepsin-treated TSD4 collagen demonstrated significant differences from those of other collagens (II, III, IV) of the type α1(X)3, although similar to that of the α1 chain of type I collagen, [α1(I)]2α2. Taken together, acrylamide gel electrophoresis, amino acid composition, electron microscopy, and cyanogen bromide peptide analysis indicate that this material represents a new molecular species of collagen not previously characterized, probably related to [α1(I)]3.  相似文献   

2.
Conformational energy computations were carried out on collagenlike triple-stranded conformations of several poly(tripeptide)s with the general structure CH3CO? (Gly? X? Y)3? NHCH3. The sequences considered had various amino acid residues in position X or Y of the central tripeptide, with either Pro or Ala as a neighbor, i.e., Gly-X-Pro, Gly-X-Ala, Gly-Pro-Y, and Gly-Ala-Y. Minimum-energy conformations were computed for the side chains, and their distributions were compared for the four sequences. The residues used were Abu (= α-aminobutyric acid), Leu, Phe, Ser, Asp, Asn, Val, Ile, and Thr. The conformational energy of a ? Ch2? CH3 side chain in Abu was mapped as a function of the dihedral angle χ1. Intrastrand interactions with neighboring residues do not affect the conformations of a side chain in position Y, and they have a minor effect on it in the X-Ala sequence, but they strongly restrict the conformational freedom of the side chain in the X-Pro sequence. Conversely, interstrand interactions do not affect side chains in position X, but they strongly restrict the conformational freedom of a side chain in position Y if there is a nearby Pro residue in a neighboring strand. Hydrogen bonds with the backbone can be formed in some conformations of long polar side chains, such as Asp, Asn, or Gln. All amino acid residues can be accommodated in collagen. Because of the interactions mentioned above, steric and energetic constraints can be correlated with observed preferences of certain amino acids for positions X or Y in collagen. Hence, these preferences may be explained, in part, in terms of differences in the conformational freedom of the side chains in the triple-stranded structure.  相似文献   

3.
《FEBS letters》1996,396(1):37-42
The laminin α1 chain carboxyl-terminal globular domain (G domain) contains multiple biological activities. Recently, we identified five cell binding sequences from the G domain by screening with overlapping 12-mer peptides encompassing the entire domain. The structures of these five sequences in the α1 chain are conserved in the corresponding regions of the different laminin α chains. Here we characterize the adhesion activities of the corresponding peptide segments from both the mouse laminin α2 chain and Drosophila laminin α chain using peptide-coated plastic plates and peptide-conjugated Sepharose beads. Using several cell lines, the laminin α2 chain peptides showed cell attachment and/or spreading activities with cell type specificities. Cell spreading on MG-10 was inhibited by integrin antibodies. Four of the Drosophila laminin peptides showed cell attachment activities. These results suggest that biologically active regions in the G domain are conserved in the laminin α1 and α2 chains, and that these regions in laminin play an important role in cell surface receptor interactions.  相似文献   

4.
A collagen fraction representing two-thirds of the collagenous sequences in bovine lens capsules has been isolated following limited pepsin digestion and purified by DEAE- and carboxymethyl-cellulose chromatography in native form. The denaturation products of this collagen contain two types of components. The more acidic components (C and 50K1) are, respectively an α-chain-sized collagenous polypeptide and a mixture of smaller molecular weight proteolytic cleavage products of the C chain. The more basic components (80K and 50K2) represent, respectively, a collagenous polypeptide with an apparent Mr = 80,000 and a mixture of smaller molecular weight components derived through proteolysis of the 80K component. The C chain and 80K components are unique with respect to chromatographic properties, amino acid composition, and cyanogen bromide cleavage products. These data are interpreted to indicate that lens capsule basement membrane collagen molecules collectively contain at least two genetically distinct collagen chains: the C chain representing the collagenous domain of one type of chain and the 80K component representing the major portion of the collagenous domain of a second type of chain, designated the D chain.  相似文献   

5.
The amino acid sequences of type I collagen containing α1(I) and α2 chains at a ratio of 2:1, and of type III collagen consisting of α1 (III) chains are known. A statistical analysis of the sequences of these α chains is presented. The inter-chain comparison showed a high level of homology between the three α chains. The interactive amino acids, such as the polar charged and part of the hydrophobic residues responsible for the assembly of the molecules, are strongly conserved. The intra-chain analysis revealed that the α chains are divided into four related D units, each with a length of 234 residues. Between the D units within a chain the polar residues show a higher variability than the hydrophobic amino acids.Besides the D units, other periodicities such as D3 (78 residues), D6 (39 residues), solD11 (21 residues) and solD13 (18 residues) were observed, particularly in α1 (I) and α1 (III). The D unit is a functional repeat that is formed by the interactive polar charged and hydrophobic residues and which determines the aggregation of the molecules. The solD3 unit is mainly pronounced by the non-interactive residues such as proline and alanine and appears to be a reminiscence of a primordial gene. The smaller periodic repeating units may be considered as additional genetic units or as structural units, which determine the triplehelical pitch and thus the lateral aggregation of the molecules.In contrast to α1 (I) and α1 (III), the α2 chain shows less regularity in its internal structure.  相似文献   

6.
Human skin has previously been shown to contain at least two genetically distinct types of collagen, type I and III. Here the presence of an additional form of collagen, α1(I)-trimer, is demonstrated. Skin collagen was solubilized by limited pepsin digestion and then fractionated by sequential precipitation with 1.5, 2.5, and 4.0 m NaCl at pH 7.4. The α-chain subunits of collagen were isolated by gel filtration and carboxymethylcellulose chromatography under denaturing conditions. The 1.5 and 2.5 m NaCl precipitates contained predominantly type I collagen with a chain composition of [α1(I)]2α2. In the 1.5 m precipitate a small amount of type III collagen was also recovered. In contrast, the 4.0 m NaCl fraction consisted almost exclusively of α-chains which on the basis of cyanogen bromide peptide mapping were shown to be identical with α1(I). The amino acid composition of these chains was also similar to that of α1(I), except that hydroxylysine was increased and lysine was correspondingly decreased. The content of 3-hydroxyproline was also increased. These results suggest that the α-chains in α1(I)-trimer are the same gene products as α1 in type I collagen, but that the co-translational or post-translational hydroxylation of lysyl residues is more extensive in α1(I)-trimer. Estimation of the quantitative amounts of α1(I)-trimer indicated that this collagen accounts for less than 5% of the total collagen in adult human skin. It is speculated, however, that α1(I)-trimer collagen may play a role in the stability and tensile strength of normal human skin and other tissues, and defects in its biochemistry might be associated with diseases of connective tissue.  相似文献   

7.
The fibrillar collagen types I, II, and V/XI have recently been shown to have partially 3-hydroxylated proline (3Hyp) residues at sites other than the established primary Pro-986 site in the collagen triple helical domain. These sites showed tissue specificity in degree of hydroxylation and a pattern of D-periodic spacing. This suggested a contributory role in fibril supramolecular assembly. The sites in clade A fibrillar α1(II), α2(V), and α1(I) collagen chains share common features with known prolyl 3-hydroxylase 2 (P3H2) substrate sites in α1(IV) chains implying a role for this enzyme. We pursued this possibility using the Swarm rat chondrosarcoma cell line (RCS-LTC) found to express high levels of P3H2 mRNA. Mass spectrometry determined that all the additional candidate 3Hyp substrate sites in the pN type II collagen made by these cells were highly hydroxylated. In RNA interference experiments, P3H2 protein synthesis was suppressed coordinately with prolyl 3-hydroxylation at Pro-944, Pro-707, and the C-terminal GPP repeat of the pNα1(II) chain, but Pro-986 remained fully hydroxylated. Furthermore, when P3H2 expression was turned off, as seen naturally in cultured SAOS-2 osteosarcoma cells, full 3Hyp occupancy at Pro-986 in α1(I) chains was unaffected, whereas 3-hydroxylation of residue Pro-944 in the α2(V) chain was largely lost, and 3-hydroxylation of Pro-707 in α2(V) and α2(I) chains were sharply reduced. The results imply that P3H2 has preferred substrate sequences among the classes of 3Hyp sites in clade A collagen chains.  相似文献   

8.
Tissue-specific assembly of fibers composed of the major collagen types I and II depends in part on the formation of heterotypic fibrils, using the quantitatively minor collagens V and XI. Here we report the identification of a new fibrillar-like collagen chain that is related to the fibrillar alpha1(V), alpha1(XI), and alpha2(XI) collagen polypeptides and which is coexpressed with type I collagen in the developing bone and eye. The new collagen was designated the alpha1(XXIV) chain and consists of a long triple helical domain flanked by typical propeptide-like sequences. The carboxyl propeptide is classic, with 8 conserved cysteine residues. The amino-terminal peptide contains a thrombospodin-N-terminal-like (TSP) motif and a highly charged segment interspersed with several tyrosine residues, like the fibril diameter-regulating collagen chains alpha1(V) and alpha1(XI). However, a short imperfection in the triple helix makes alpha1(XXIV) unique from other chains of the vertebrate fibrillar collagen family. The triple helical interruption and additional select features in both terminal peptides are common to the fibrillar chains of invertebrate organisms. Based on these data, we propose that collagen XXIV is an ancient molecule that may contribute to the regulation of type I collagen fibrillogenesis at specific anatomical locations during fetal development.  相似文献   

9.
The giant extracellular hemoglobin (3,800 kDa) of the oligochaete Lumbricus terrestris consists of four subunits: a monomer (chain I), two subunits each of about 35 kDa (chains V and VI), and a disulfide-bonded trimer (50 kDa) of chains II, III, and IV. The complete amino acid sequence of chain I was determined: it consists of 142 amino acid residues and has a molecular weight of 16,750 including a heme group. Fifty-nine residues (42%) were found to be identical with those in the corresponding positions in Lumbricus chain II (Garlick, R. L., and Riggs, A. F. (1982) J. Biol. Chem. 257, 9005-9015); 45 (32%), 56 (40%), 44 (31%), and 45 (32%) residues were found to be in identical positions in the sequences of chains I, IIA, IIB, and IIC, respectively, of Tylorrhynchus heterochaetus hemoglobin (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267). When the sequences of all six annelid chains are compared, 18 invariant residues are found in the first 104 residues of the molecule; very little homology exists among the annelid chains in the carboxyl-terminal 38-residue region. Nine of the 18 invariant residues are also found in the human beta-globin chain.  相似文献   

10.
Collagenolysis plays a central role in many disease processes and a detailed understanding of the mechanism of collagen degradation is of immense interest. While a considerable body of information about collagenolysis exists, the details of the underlying molecular mechanism are unclear. Therefore, to further our understanding of the precise mechanism of collagen degradation, we used molecular dynamics simulations to explore the structure of human type I collagen in the vicinity of the collagenase cleavage site. Since post-translational proline hydroxylation is an important step in the synthesis of collagen chains, we used the DNA sequence for the α1 and α2 chains of human type I collagen, and the known amino acid sequences for bovine and chicken type I collagen, to infer which prolines are hydroxylated in the vicinity of the collagenase cleavage site. Simulations of type I collagen in this region suggest that partial unfolding of the α2 chain is energetically preferred relative to unfolding of α1 chains. Localized unfolding of the α2 chain leads to the formation of a structure that has disrupted hydrogen bonds N-terminal to the collagenase cleavage site. Our data suggest that this disruption in hydrogen bonding pattern leads to increased chain flexibility, thereby enabling the α2 chain to sample different partially unfolded states. Surprisingly, our data also imply that α2 chain unfolding is mediated by the non-hydroxylation of a proline residue that is N-terminal to the cleavage site in α1 chains. These results suggest that hydroxylation on one chain (α1) can affect the structure of another chain (α2), and point to a critical role for the non-hydroxylation of proline residues near the collagenase cleavage site.  相似文献   

11.
Summary

In its physiological solid state, type I collagen serves as a host for many types of cells. Only the molecules on fiber surface are available for interaction. In this interfacial environment, the conformation of a cell binding domain can be expected to fluctuate between the collagen fold and a distinctive non-collagen molecular marker for recognition and allosteric binding. If the cell binding domain can be localized in contiguous residues within the exposed half of a turn of the triple helix (approximately 15 residues), the need for extensive structural modification and unraveling of the triple helix is avoided.

We examined the conformational preferences and biological activity of a synthetic 15- residue peptide (P-15), analogous to the sequence 766GTPGPQGIAGQRGVV780 in the al (I) chain. Theoretical studies showed a high potential for a stable β-bend for the central GIAG sequence. The flanking sequences showed facile transition to extended conformations. Circular dichroism of the synthetic peptide in anisotropic solvents confirmed the presence of β-strand and β-bend structures.

P-15 inhibited fibroblast binding to collagen in a concentration dependent manner, with near maximal inhibition occurring at a concentration of 7.2×10?6 M. The temporal pattern of cell attachment was altered markedly in the presence of P-15. No inhibition was seen with a peptide P-15 (AI), an analogue of P-15 with the central IA residues reversed to AI or with collagen-related peptides (Pro-Pro-Gly)10, (Pro-Pro-Gly)10, and polyproline, and with several unrelated peptides.

Our studies suggest a molecular mechanism for cell binding to collagen fibers based on a conformational transition in collagen molecules on the fiber surface. Since the energy barrier between the collagen fold and β-strand conformation is low, a local conformational change may be possible in molecules on the fiber surface because of their location in an anisotropic environment. Our observations also suggest that the sequence incorporated in P-15 may be a specific ligand for cells. Unlike other reported cell binding peptides, the residues involved in this interaction are non-polar.  相似文献   

12.
We have determined the 1.8 Å crystal structure of a triple helical integrin-binding collagen peptide (IBP) with sequence (Gly-Pro-Hyp)2-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)3. The central GFOGER hexapeptide is recognised specifically by the integrins α2β1, α1β1, α10β1 and α11β1. These integrin/collagen interactions are implicated in a number of key physiological processes including cell adhesion, cell growth and differentiation, and pathological states such as thrombosis and tumour metastasis. Comparison of the IBP structure with the previously determined structure of an identical collagen peptide in complex with the integrin α2-I domain (IBPc) allows the first detailed examination of collagen in a bound and an unbound state. The IBP structure shows a direct and a water-mediated electrostatic interaction between Glu and Arg side-chains from adjacent strands, but no intra-strand interactions. The interactions between IBP Glu and Arg side-chains are disrupted upon integrin binding. A comparison of IBP and IBPc main-chain conformation reveals the flexible nature of the triple helix backbone in the imino-poor GFOGER region. This flexibility could be important to the integrin-collagen interaction and provides a possible explanation for the unique orientation of the three GFOGER strands observed in the integrin-IBPc complex crystal structure.  相似文献   

13.
Attachment of rat hepatocytes to collagen, which occurs without the aid of fibronectin, was found to be a time-dependent reaction characterized by an initial lag phase of 10–20 min before stable attachment bonds began to form. Increasing the density of molecules in the collagen substrates enhanced the rate of cell attachment. The hepatocytes attached essentially equally well to all the collagen types tested (types I, II, III, IV and V). The initial rate of cell attachment was more rapid to native collagen than to denatured collagen or α1(I) chains, apparently indicating different affinities of the cells for these substrates. However, if cells were incubated for 60 min or more, efficient attachment occurred to the α1(I) chain and to all cyanogen-bromide-treated peptides tested (α1-CB2, α1-CB3, α1-CB4, α1-CB5, α1-CB6A, α1-CB7, α1-CB8, α2-CB2, α2-CB3 and α2-CB4) but not to the aminopropeptide of type I procollagen. A low but significant degree of attachment also took place to substrates made of synthetic peptides with the collagen-like structures (Gly-Ala-Pro)n, (Gly-Pro-Pro)n and (Gly-Pro-Hyp)n, whereas no attachment was observed to polyproline. We suggest that the cell-binding sites in collagen have a simple structure and occur in multiple copies along the collagen molecule. Addition of collagen in solution inhibited intial cell attachment, an effect that persisted longer on substrates made of α1(I) chain than on denatured collagen. The collected data are interpreted in terms of a model for cell-to-collagen adhesion where the formation of stable attachment bonds requires the binding of several low-affinity receptors, clustered at the site of adhesion, to collagen molecules in the substrate.  相似文献   

14.
Hudson DM  Kim LS  Weis M  Cohn DH  Eyre DR 《Biochemistry》2012,51(12):2417-2424
Proline residues in collagens are extensively hydroxylated post-translationally. A rare form of this modification, (3S,2S)-l-hydroxyproline (3Hyp), remains without a clear function. Disruption of the enzyme complex responsible for prolyl 3-hydroxylation results in severe forms of recessive osteogenesis imperfecta (OI). These OI types exhibit a loss of or reduction in the level of 3-hydroxylation at two proline residues, α1(I) Pro986 and α2(I) Pro707. Whether the resulting brittle bone phenotype is caused by the lack of the 3-hydroxyl addition or by another function of the enzyme complex is unknown. We have speculated that the most efficient mechanism for explaining the chemistry of collagen intermolecular cross-linking is for pairs of collagen molecules in register to be the subunit that assembles into fibrils. In this concept, the exposed hydroxyls from 3Hyp are positioned within mutually interactive binding motifs on adjacent collagen molecules that contribute through hydrogen bonding to the process of fibril supramolecular assembly. Here we report observations on the physical binding properties of 3Hyp in collagen chains from experiments designed to explore the potential for interaction using synthetic collagen-like peptides containing 3Hyp. Evidence of self-association was observed between a synthetic peptide containing 3Hyp and the CB6 domain of the α1(I) chain, which contains the single fully 3-hydroxylated proline. Using collagen from a case of severe recessive OI with a CRTAP defect, in which Pro986 was minimally 3-hydroxylated, such binding was not observed. Further study of the role of 3Hyp in supramolecular assembly is warranted for understanding the evolution of tissue-specific variations in collagen fibril organization.  相似文献   

15.
Native type III collagen and procollagen were prepared from fetal bovine skin. Examination of the cleavage products produced by digestion with tadpole collagenase demonstrated that the three palpha1(III) chains of type III procollagen were linked together by disulfide bonds occurring at both the amino-terminal and carboxy-terminal portions of the molecule. Type III collagen contained interchain disulfide bonds only in the carboxy-terminal region of the molecule. After digestion of procollagen with bacterial collagenase an amino-terminal, triple-stranded peptide fragment was isolated. The reduced and alkylated chain constituents of this fragment had molecular weights of about 21 000. After digestion of procollagen with cyanogen bromide a related triple-stranded fragment was isolated. The chains of the cyanogen bromide fragment had a molecular weight of about 27 000. When the collagenase-derived peptide was fully reduced and alkylated, it became susceptible to further digestion with bacterial collagenase. This treatment released a fragment of about 97 amino acid residues which contained 12 cystein residues and had an amino acid composition typical for globular proteins. A second, non-helical fragment of about 48 amino acid residues contained three cysteines. This latter fragment is formed from sequences that overlap the amino-terminal region in the collagen alpha1(III) chain by 20 amino acids and possesses an antigenic determinant specific for the alpha1(III) chain. The collagenase-sensitive region exposed by reduction comprised about 33 amino acid residues. It was recovered as a mixture of small peptides. These results indicate that the amino-terminal region of type III procollagen has the same type of structure as the homologous region of type I procollagen. It consists of a globular, a collagen-like and a non-helical domain. Interchain disulfide bonding and the occurrence of cysteines in the non-helical domain are, however, unique for type III procollagen.  相似文献   

16.
The predominant form of type V collagen is the [α1(V)]?α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.  相似文献   

17.
Type VI collagen is a component of 100 nm long periodic filaments with a widespread distribution around collagen fibers and on the surface of cells. It is an unusual collagen constituted by three distinct chains, one of which (alpha 3) is much larger than the others and is encoded by a 9-kb mRNA. The amino acid sequence of the alpha 3(VI) deduced from the present cDNA clones specifies for a multidomain protein of at least 2648 residues made of a short collagenous sequence (336 residues), flanked at the N-terminus by nine 200 residue long repeating motifs and at the C-terminus by two similar motifs that share extensive identities with the collagen-binding type A repeats of von Willebrand factor. Type VI collagen and alpha 3(VI) fusion proteins bound to insolubilized type I collagen in a specific, time-dependent, and saturable manner. The alpha 3(VI) chain has three Arg-Gly-Asp sequences in the collagenous domain, and cell attachment was stimulated by the triple helix of type VI collagen and by alpha 3(VI) fusion proteins containing Arg-Gly-Asp sequences. This function was specifically inhibited by the Arg-Gly-Asp-Ser synthetic peptide. The type I collagen-binding and the cell-attachment properties of the alpha 3(VI) chain provide direct information for the role of type VI collagen in connective tissues.  相似文献   

18.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

19.
The platelet and extracellular matrix glycoprotein thrombospondin interacts with various types of cells as both a positive and negative modulator of cell adhesion, motility, and proliferation. These effects may be mediated by binding of thrombospondin to cell surface receptors or indirectly by binding to other extracellular matrix components. The role of peptide sequences from the type I repeats of thrombospondin in its interaction with fibronectin were investigated. Fibronectin bound specifically to the peptide Gly-Gly-Trp-Ser-His-Trp from the second type I repeat of thrombospondin but not to the corresponding peptides from the first or third repeats or flanking sequences from the second repeat. The two Trp residues and the His residue were essential for binding, and the two Gly residues enhanced the affinity of binding. Binding of the peptide and intact thrombospondin to fibronectin were inhibited by the gelatin-binding domain of fibronectin. The peptide specifically inhibited binding of fibronectin to gelatin or type I collagen and inhibited fibronectin-mediated adhesion of breast carcinoma and melanoma cells to gelatin or type I collagen substrates but not direct adhesion of the cells to fibronectin, which was inhibited by the peptide Gly-Arg-Gly-Asp-Ser. Thus, the fibronectin- binding thrombospondin peptide Gly-Gly-Trp-Ser-His-Trp is a selective inhibitor of fibronectin-mediated interactions of cells with collagen in the extracellular matrix.  相似文献   

20.
Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPP)n) in addition to the fully occupied A1 site at Pro986. The C-terminal (GPP)n motif has five consecutive GPP triplets in α1(I), four in α2(I) and three in α1(II), all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin) and type II collagen (cartilage and notochord) were examined by mass spectrometry. The (GPP)n domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human), up to five 3-hydroxyproline residues per (GPP)n motif were found in α1(I) and four in α2(I), with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPP)n site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号