首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Study of roots and associated organisms in soil particularly in mixed plant populations, such as pastures, is limited by difficulties in quantification of root growth and function. The research evaluated the potential of DNA quantification by real-time PCR to improve our capacity to study and understand roots in such contexts. Probes and primers were developed for two common pasture species, Trifolium subterraneum and Lolium perenne (and closely related Lolium spp.), and evaluated for specificity and sensitivity in TaqMan assays on DNA extracted from soil. Further experiments examined the ability to detect DNA in dead roots, the changes in root DNA levels of plants defoliated or treated with herbicide and the relationship between DNA and root dry weight for single and mixed plant species grown in pots. T. subterraneum DNA/PCR 200 fg/µl was detected at 17.5 cycles and L. perenne at 19.5 cycles. The assay for T. subterraneum was species specific but the L. perenne assay, as anticipated from the choice of probe, also detected some closely related species. The assays were sensitive and capable of detecting equivalent to <2 mg roots/kg of dry soil and able to quantify targets in mixed populations. DNA concentration varied with plant age and genotype and DNA in dead roots found to decay rapidly over a few days. DNA concentrations in roots were found to respond more rapidly to defoliation and herbicide treatments than root mass. This approach appears to offer a new way to study roots in soil and indicates that quantifying root DNA could provide insights into root function and responses not readily provided by other methods.  相似文献   

2.
AIMS: Real-time PCR, based on TaqMan chemistry, was used to detect Biscogniauxia mediterranea, a fungal pathogen that after a long endophytic phase may cause charcoal disease in oak trees. METHODS AND RESULTS: Specific primers and probe were designed and tested on axenic cultures of B. mediterranea and other fungi commonly colonizing oaks. Twig samples were collected in Tuscany from apparently healthy oaks (Quercus cerris, Quercus ilex and Quercus pubescens) growing near trees infected with the fungus. Twigs were divided into two groups: one for isolation in agar plates, and one for real-time PCR after DNA extraction. The detection limit of the assay was 0.01 pg/DNA, whereas the amounts of fungal DNA detected in asymptomatic tissue were >0.5 pg microg(-1) total DNA extracted. In the apparently healthy twigs the frequency of isolation found on agar was 25.0%, much lower than that with real-time PCR (96.4%). CONCLUSIONS: Real-time PCR is a sensitive and fast technique able to specifically detect and quantify the DNA of B. mediterranea in oak tissue. SIGNIFICANCE AND IMPACT OF THE STUDY: This diagnostic method is a precise tool to localize fungi in symptomless plant tissues and promises to advance our understanding of fungal infection during their latent phase.  相似文献   

3.

Background and aims

The quantification of root dynamics remains a major challenge in ecological research because root sampling is laborious and prone to error due to unavoidable disturbance of the delicate soil-root interface. The objective of the present study was to quantify the distribution of the biomass and turnover of roots of poplars (Populus) and associated understory vegetation during the second growing season of a high-density short rotation coppice culture.

Methods

Roots were manually picked from soil samples collected with a soil core from narrow (75 cm apart) and wide rows (150 cm apart) of the double-row planting system from two genetically contrasting poplar genotypes. Several methods of estimating root production and turnover were compared.

Results

Poplar fine root biomass was higher in the narrow rows than in the wide rows. In spite of genetic differences in above-ground biomass, annual fine root productivity was similar for both genotypes (ca. 44 g DM m?2 year?1). Weed root biomass was equally distributed over the ground surface, and root productivity was more than two times higher compared to poplar fine roots (ca. 109 g DM m?2 year?1).

Conclusions

Early in SRC plantation development, weeds result in significant root competition to the crop tree poplars, but may confer certain ecosystem services such as carbon input to soil and retention of available soil N until the trees fully occupy the site.  相似文献   

4.
The plant growth promoting bacteria Herbaspirillum seropedicae SmR1 is an endophytic diazotroph found in several economically important crops. Considering that methods to monitor the plant–bacteria interaction are required, our objective was to develop a real-time PCR method for quantification of PGPB H. seropedicae in the rhizosphere of maize seedlings. Primer pairs were designed, and their specificity was verified using DNA from 12 different bacterial species. Ten standard curves of qPCR assay using HERBAS1 primers and tenfold serial dilutions of H. seropedicae SmR1 DNA were performed, and PCR efficiency of 91 % and correlation coefficient of 0.99 were obtained. H. seropedicae SmR1 limit of detection was 101 copies (corresponding to 60.3 fg of bacterial DNA). qPCR assay using HERBAS1 was used to detect and quantify H. seropedicae strain SmR1 in inoculated maize roots, cultivated in vitro and in pots, harvested 1, 4, 7, and 10 days after inoculation. The estimated bacterial DNA copy number per gram of root was in the range 107–109 for plants grown in vitro and it was around 106 for plants grown in pots. Primer pair HERBAS1 was able to quantify H. seropedicae SmR1, and this assay can be useful for monitoring plant–bacteria interaction.  相似文献   

5.
Early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica Borkh) trees were characterized to determine the relationship of these events to fine root growth rate and development. New roots were traced on root windows to measure growth and then collected and stained to quantify microscopically the presence of mycorrhizal and nonmycorrhizal fungal structures. Most new roots were colonized by either mycorrhizal or nonmycorrhizal fungi but none less 25 days old were ever internally colonized by both. Compared to nonmycorrhizal colonization, mycorrhizal colonization was associated with faster growing roots and roots that grew for a longer duration, leading to longer roots. While either type of fungi was observed in roots as soon as 3 days after root emergence, intraradical colonization by mycorrhizal fungi was generally faster (peaking at 7 to 15 days) than that by nonmycorrhizal fungi and often occurred more frequently in younger roots. Only 15 to 35% of the roots had no fungal colonization by 30 days after emergence. This study provides the first detailed examination of the early daily events of mycorrhizal and nonmycorrhizal fungal colonization in newly emerging roots under field conditions. We observed marked discrimination of roots between mycorrhizal and nonmycorrhizal fungi and provide evidence that mycorrhizal fungi may select for faster growing roots and possibly influence the duration of root growth by non-nutritional means.  相似文献   

6.
Rapid detection of Oenococcus oeni in wine by real-time quantitative PCR   总被引:5,自引:0,他引:5  
AIMS: To develop a real-time polymerase chain reaction (PCR) method for rapid detection and quantification of Oenococcus oeni in wine samples for monitoring malolactic fermentation. METHODS AND RESULTS: Specific primers and fluorogenic probe targeted to the gene encoding the malolactic enzyme of O. oeni were developed and used in real-time PCR assays in order to quantify genomic DNA either from bacterial pure cultures or wine samples. Conventional CFU countings were also performed. The PCR assay confirmed to be specific for O. oeni species and significantly correlated to the conventional plating method both in pure cultures and wine samples (r = 0.902 and 0.96, respectively). CONCLUSIONS: The DNA extraction from wine and the real-time PCR quantification assay, being performed in ca 6 h and allowing several samples to be concurrently processed, provide useful tools for the rapid and direct detection of O. oeni in wine without the necessity for sample plating. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid quantification of O. oeni by a real-time PCR assay can improve the control of malolactic fermentation in wines allowing prompt corrective measures to regulate the bacterial growth.  相似文献   

7.
Three hundred and twenty-seven fungal endophyte isolates were obtained from hair roots of neighbouring Woollsia pungens Cav. (Muell.) and Leucopogon parviflorus (Andr.) Lindl. (both Ericaceae) plants at an Australian dry sclerophyll forest site and mapped according to the root segments from which they were obtained. Restriction fragment length polymorphism (RFLP) analysis of the rDNA internal transcribed spacer (ITS) region indicated that the isolate assemblage comprised 21 RFLP-types (= putative taxa), five of which were shown in gnotobiotic culture experiments to be ericoid mycorrhizal endophytes. While two mycorrhizal RFLP-types were exclusive to either W. pungens or L. parviflorus, RFLP-type VI was isolated from both hosts. This putative taxon had strong ITS sequence identity with Helotiales ericoid mycorrhizal ascomycetes, comprised ca. 75% of all isolates from each plant and was spatially widespread in both root systems. Inter-simple sequence repeat PCR analysis indicated that two and four genotypes of RFLP-type VI were present in the W. pungens and L. parviflorus root systems respectively, however single genotypes appeared to dominate each root system. One genotype was present in both root systems. The data suggest that assemblages of ericoid mycorrhizal fungi from hair roots of individual Ericaceae plants in dry sclerophyll forest habitats are characterised by relatively low genetic diversity.  相似文献   

8.
The dinoflagellate Prorocentrum minimum was successfully detected using loop-mediated isothermal amplification (LAMP) and real-time fluorescence quantitative PCR (RTFQ-PCR). Both specificity and sensitivity testing in the two methods have been validated. In the LAMP assay, the specific ladder-like pattern of bands only appeared in those templates containing P. minimum. The sensitivity of LAMP was tenfold higher than conventional PCR. In RTFQ-PCR assay, only positive amplifications were detected from those samples containing P. minimum. RTFQ-PCR can detect 0.1 cells and 10 pg of DNA within 40 cycles, showing its high sensitivity. Cells could be quantified according to standard curves in agreement with the quantification by standard microscopy counting methods. The LAMP method therefore is appropriate for on-the-spot testing because of its rapidity and simplification, and the RTFQ-PCR is fit for laboratory testing owing to its accurate quantification. The two methods are of significance in forecasting red tides.  相似文献   

9.
Smooth pufferfish of the family Tetraodontidae had become pure genomic models because of the remarkable compaction of their genome. This trait seems to be the result of DNA loss following its divergence from the sister family Diodontidae, which possess larger genomes. In this study, flow cytometry was used for estimate the genome size of four pufferfish species from the Neotropical region. Cytogenetic data and confocal microscopy were also used attempting to confirm relationships between DNA content and cytological parameters. The haploid genome size was 0.71?±?0.03 pg for Sphoeroides greeleyi, 0.34?±?0.01 pg for Sphoeroides spengleri, 0.82?±?0.03 pg for Sphoeroides testudineus (all Tetraodontidae), and 1.00?±?0.03 pg for Chilomycterus spinosus (Diodontidae). These differences are not related with ploidy level, because 46 chromosomes are considered basal for both families. The value for S. spengleri represents the smallest vertebrate genome reported to date. Since erythrocyte cell and nuclear sizes are strongly correlated with genome size, the variation in this last is considered under both adaptive and evolutionary perspectives.  相似文献   

10.
Olive trees play an important role in cultural, ecological, environmental and social fields, constituting in large part the Mediterranean landscape. In Tuscany, an important economic activity is based on olive. Unfortunately, the Verticillium wilt affects this species and causes vascular disease. In the present study, a real-time quantitative PCR approach has been used to detect and quantify Verticillium dahliae in soil and in olive tree tissues both in micropropagated and in seedling olives. The minimum amounts of V. dahliae DNA sequences detected in soil were 11.4 fg which is equivalent to less than one fungal haploid genome. In micropropagated olive the pathogen was detected in the leaves after 43 days, showing a vertical upward movement of the fungus from the culture medium to stem and leaves. A similar fungal behaviour was observed in inoculated olive stem where after 15 days the fungal DNA was detected from symptomless stem tissue above 8 cm the inoculation site. The described molecular approach is expected to provide a more sensitive and less time-consuming alternative detection method for V. dahliae than plating assay procedures, which were traditionally proposed as an early diagnosis method for Verticillium wilt to farmers and tree nursery growers.  相似文献   

11.
A real-time PCR SYBR green assay was developed to quantify populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing (phlD+) strains of Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed and PCR conditions were optimized to specifically amplify the phlD gene from four different genotypes of phlD+ P. fluorescens. Using purified genomic DNA and genomic DNA extracted from washes of wheat roots spiked with bacteria, standard curves relating the threshold cycles (CTs) and copies of the phlD gene were generated for P. fluorescens strains belonging to genotypes A (Pf-5), B (Q2-87), D (Q8r1-96 and FTAD1R34), and I (FTAD1R36). The detection limits of the optimized real-time PCR assay were 60 to 600 fg (8 to 80 CFU) for genomic DNA isolated from pure cultures of P. fluorescens and 600 fg to 6.0 pg (80 to 800 CFU, corresponding to log 4 to 5 phlD+ strain CFU/rhizosphere) for bacterial DNA extracted from plant root washes. The real-time PCR assay was utilized to quantify phlD+ pseudomonads in the wheat rhizosphere. Regression analysis of population densities detected by real-time PCR and by a previously described phlD-specific PCR-based dilution endpoint assay indicated a significant linear relationship (P = 0.0016, r2 = 0.2). Validation of real-time PCR assays with environmental samples was performed with two different soils and demonstrated the detection of more than one genotype in Quincy take-all decline soil. The greatest advantage of the developed real-time PCR is culture independence, which allows determination of population densities and the genotype composition of 2,4-DAPG producers directly from the plant rhizospheres and soil.  相似文献   

12.
Maize contamination with Fusarium species is one of the major sources of mycotoxins in food and feed derivates. In the present study, a LightCycler® real-time PCR method using hybridization probes was developed for the specific identification, detection, and quantification of Fusarium proliferatum, Fusarium subglutinans, Fusarium temperatum, and Fusarium verticillioides, four mycotoxin-producing pathogens of maize. Primers and hybridization probes were designed to target the translation elongation factor 1α (EF-1α) gene of F. subglutinans and F. temperatum or the calmodulin (Cal) gene of F. proliferatum and F. verticillioides. The specificity of the real-time PCR assays was confirmed for the four Fusarium species, giving no amplification with DNA from other fungal species commonly recovered from maize. The assays were found to be sensitive, detecting down to 5 pg and 50 pg of Fusarium DNA in simplex and multiplex conditions respectively, and were able to quantify pg-amounts of Fusarium DNA in artificially Fusarium-contaminated maize samples. The real-time PCR method developed provides a useful tool for routine identification, detection, and quantification of toxigenic Fusarium species in maize.  相似文献   

13.
Flow cytometry and chromosome counts were used to analyze the genetic stability of plants regenerated via Musa acuminata Colla (AA) ssp. malaccensis embryogenic cell suspension (ECS) cultures. These cultures were initiated from immature zygotic embryos (IZE) on Murashige and Skoog medium using nine different plant growth regulator (PGR) treatments. Highest percentage of embryogenic calli (EC) formation occurred on media with 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D, 97 %), and 8.2 μM of picloram (Pi, 80 %) followed by 2.2 μM 2,4-D (75 %). Embryonic development was synchronized in liquid medium by filtration, and somatic embryo development was achieved with ECS aliquots overlaid on PGR-free medium. The EC medium composition and elapsed time of both short-term (~5 months old) and long-term (~2 years old) ECS cultures influenced plant regeneration, resulting in 65–99 % embryo germination and 50 to 100 % plant conversion. The mean 2C DNA content (1.23 ± 0.002 pg) and chromosome number (2n = 2x = 22) of M. acuminata ssp. malaccensis IZEs, seedlings and sucker plantlets were similar to the reported values. No significant differences were detected among IZEs before culturing, and none were found among the IZEs and leaves of control plants and the plants regenerated from short-term ECS lines when initiated with 2,4-D or Pi vis-à-vis the accession from which they originated. However, plants regenerated from the long-term ECS-L3 culture remained diploid, had the highest DNA content (2C = 1.283 ± 0.01 pg) and were clearly separate from the other regenerated and control plants.  相似文献   

14.
Conventional microbiological techniques yield only limited information on the composition of fungal communities in dust. The aim of this study was to establish and optimize PCR-single strand conformation polymorphism (PCR–SSCP) analysis for investigation of fungal diversity in rural dust samples. Three different DNA extraction protocols were tested on 38 fungal cultures. A total of six known universal fungal primer pairs were tested targeting the 18S rRNA gene, the 28S rRNA gene and the ITS region, respectively. Objective evaluation was performed with respect to the following parameters: efficiency to amplify all 38 strains; separation of seven species from different phylogenetic groups on the SSCP gel; additional bands in PCR–SSCP analysis; possibility to classify the amplified gene fragments to species level. Primer ITS1/ITS4 and PowerSoil? DNA isolation showed the best performance in most cases and were chosen for further analysis. The detection limit of the developed system was 200 CFU/g dust. Moreover, the reproducibility of the system could be demonstrated, leading to average profile similarities of 94.94 % [SD = 2.51] within gels, 93.03 % [SD = 4.69] between different days and 87.66 % [SD = 6.62] between different gels when testing shed and mattress dust samples. Sequencing allowed identification on species level, in detail: Alternaria alternata, Cladosporium sphaerospermum, Cladosporium cladosporioides as well as the yeasts Candida cabralensis and Candida catenulata. This demonstrates the adaptability of the method. In this study, a standardized system for fungal community analysis was developed that provides reproducible results applicable for epidemiological purposes.  相似文献   

15.
Due to its superior antioxidant capabilities and higher activity than other carotenoids, astaxanthin is used widely in the nutraceutical and medicine industries. The most prolific natural producer of astaxanthin is the unicellular green microalga Haematococcus pluvialis. The correct identification of any contaminants in H. pluvialis cultures is both essential and nontrivial for several reasons. Firstly, while it is possible to distinguish the main microalgal contaminant Coelastrella sp. (in H. pluvialis cultures), in practice, it is frequently a daunting and error-prone task for personnel without extensive experience in the microscopic identification of algal species. Secondly, the undetected contaminants may decrease or stop production of astaxanthin. Lastly, the presence of other contaminants such as fungi can eventually infect and destroy the whole algae collection. In this study, high-resolution melting (HRM) analysis was developed to detect microalgal and fungal contamination. The developed diagnostic procedure allowed to distinguish pure H. pluvialis samples from cultures contaminated with low amounts (1.25 ng/ml) of microalgal DNA and fungal DNA (2.5 ng/ml). Such discrimination is not possible with the use of microscopy observations and allows fast and efficient collection testing.  相似文献   

16.

Aims

The aim was to quantify the nitrogen (N) transferred via the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices from both a dead host and a dead non-host donor root to a receiver tomato plant. The effect of a physical disruption of the soil containing donor plant roots and fungal mycelium on the effectiveness of N transfer was also examined.

Methods

The root systems of the donor (wild type tomato plants or the mycorrhiza-defective rmc mutant tomato) and the receiver plants were separated by a 30 μm mesh, penetrable by hyphae but not by the roots. Both donor genotypes produced a similar quantity of biomass and had a similar nutrient status. Two weeks after the supply of 15?N to a split-root part of donor plants, the shoots were removed to kill the plants. The quantity of N transferred from the dead roots into the receiver plants was measured after a further 2 weeks.

Results

Up to 10.6 % of donor-root 15N was recovered in the receiver plants when inoculated with the arbuscular mycorrhizal fungus (AMF). The quantity of 15N derived from the mycorrhizal wild type roots clearly exceeded that from the only weakly surface-colonised rmc roots. Hyphal length in the donor rmc root compartments was only about half that in the wild type compartments. The disruption of the soil led to a significantly increased AMF-mediated transfer of N to the receiver plants.

Conclusions

The transfer of N from dead roots can be enhanced by AMF, especially when the donor roots have been formerly colonised by AMF. The transfer can be further increased with higher hyphae length densities, and the present data also suggest that a direct link between receiver mycelium and internal fungal structures in dead roots may in addition facilitate N transfer. The mechanical disruption of soil containing dead roots may increase the subsequent availability of nutrients, thus promoting mycorrhizal N uptake. When associated with a living plant, the external mycelium of G. intraradices is readily able to re-establish itself in the soil following disruption and functions as a transfer vessel.  相似文献   

17.
The aim of this study was to investigate the polymicrobial communities in an adult Cystic Fibrosis population stratified by gender and the most common CFTR mutation, F508del. In this pilot study, DNA was extracted from sputum samples of 29 adult patients (16 male: 13 female) with an F508del mutation in a stable clinical state. Universal primers were used to amplify DNA from bacterial and fungal communities and the resulting fragments were analysed by denaturing gradient gel electrophoresis. Bacterial profiles showed a significant effect of gender (P = 0.046) and P. aeruginosa carriage (P = 0.034) on community structure. Bacterial communities were found to be randomly assembled. Fungal community analysis found that F508del homozygous patients had a greater diversity than heterozygous patients (P = 0.007). This study indicates that the bacterial lung communities of adult CF patients are randomly assembled but have distinct gender based differences. Furthermore, the fungal communities colonising the CF lung are more diverse in F508 homozygotes. This is the first paper to identify a reduced bacterial diversity in female patients with CF and to implicate more severe CFTR genotypes with increased risk of infection with multiple fungal species.  相似文献   

18.
A real-time PCR SYBR green assay was developed to quantify populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing (phlD+) strains of Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed and PCR conditions were optimized to specifically amplify the phlD gene from four different genotypes of phlD+ P. fluorescens. Using purified genomic DNA and genomic DNA extracted from washes of wheat roots spiked with bacteria, standard curves relating the threshold cycles (C(T)s) and copies of the phlD gene were generated for P. fluorescens strains belonging to genotypes A (Pf-5), B (Q2-87), D (Q8r1-96 and FTAD1R34), and I (FTAD1R36). The detection limits of the optimized real-time PCR assay were 60 to 600 fg (8 to 80 CFU) for genomic DNA isolated from pure cultures of P. fluorescens and 600 fg to 6.0 pg (80 to 800 CFU, corresponding to log 4 to 5 phlD+ strain CFU/rhizosphere) for bacterial DNA extracted from plant root washes. The real-time PCR assay was utilized to quantify phlD+ pseudomonads in the wheat rhizosphere. Regression analysis of population densities detected by real-time PCR and by a previously described phlD-specific PCR-based dilution endpoint assay indicated a significant linear relationship (P = 0.0016, r2 = 0.2). Validation of real-time PCR assays with environmental samples was performed with two different soils and demonstrated the detection of more than one genotype in Quincy take-all decline soil. The greatest advantage of the developed real-time PCR is culture independence, which allows determination of population densities and the genotype composition of 2,4-DAPG producers directly from the plant rhizospheres and soil.  相似文献   

19.
The use of ectomycorrhizal (ECM) fungi for afforestation, bioremediation, and timber production requires their maintenance over long periods under conditions that preserve their genetic, phenotypic, and physiological stability. Cryopreservation is nowadays considered as the most suitable method to maintain the phenotypic and genetic stability of a large number of filamentous fungi including the ECM fungi. Here, we compared the ability of eight ECM fungal isolates to colonize Pinus sylvestris roots and to transport inorganic phosphate (Pi) and NH4 + from the substrate to the plant after cryopreservation for 6 months at ?130 °C or after storage at 4 °C. Overall, the mode of preservation had no significant effect on the colonization rates of P. sylvestris, the concentrations of ergosterol in the roots and substrate, and the uptake of Pi and NH4 +. Comparing the isolates, differences were sometimes observed with one or the other method of preservation. Suillus bovinus exhibited a reduced ability to form mycorrhizas and to take up Pi following cryopreservation, while one Suillus luteus isolate exhibited a decreased ability to take up NH4 +. Conversely, Hebeloma crustuliniforme, Laccaria bicolor, Paxillus involutus, and Pisolithus tinctorius exhibited a reduced ability to form mycorrhizas after storage at 4 °C, although this did not result in a reduced uptake of Pi and NH4 +. Cryopreservation appeared as a reliable method to maintain important phenotypic characteristics (i.e., root colonization and nutrient acquisition) of most of the ECM fungal isolates studied. For 50 % of the ECM fungal isolates, the colonization rate was even higher with the cultures cryopreserved at ?130 °C as compared to those stored at 4 °C.  相似文献   

20.
The taxonomy of all species of Narcissus (Amaryllidaceae), an important horticultural crop, has not been investigated recently. As a new approach, genome size was determined by flow cytometry with propidium iodide from 375 accessions. The somatic nuclear DNA contents (2C) were shown to range from 14 to 38 pg for the diploids. Narcissus assoanus and N. gaditanus are, based on their nuclear DNA content, removed from section Apodanthi and placed in a new section Juncifolii. The different ploidy levels and species involved were entangled for N . “fernandesii” s.l. and a new allotetraploid form is named here. Section Pseudonarcissus was much more heterogeneous in nuclear DNA content than expected. Sixty-five accessions of N. pseudonarcissus possessed, with 23.7 pg, similar amounts of DNA. However, several species from this section were clearly distinctive in nuclear DNA content. It runs from the diploid N. primigenius with 21.7 pg to the also diploid N. nevadensis with 38.2 pg. Also N. abscissus and N. moleroi are with about 26 pg clearly different from N. pseudonarcissus. For the first time, in 11 accessions, hexaploidy was found in N. pseudonarcissus ssp. bicolor. A new section Nevadensis with 30–39 pg of nuclear DNA was split off from the section Pseudonarcissus with now 21–27 pg. A nonoploid N. dubius with 96.3 pg has by far the highest amount of nuclear DNA and can be calculated to have the highest ploidy ever reported in Narcisssus. The total number of Narcissus species was determined as 36, nine more than in Flora Europaea and they were divided up in two subgenera and 11 sections. Flow cytometry is shown to produce easily obtainable and original systematic data that lead to new insights. Genome size or C-value turns out to be one of the most salient features to define the status of the species in the genus Narcissus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号