首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States.

Methods

In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region.

Results

BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99–100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified.

Conclusions

Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode.  相似文献   

2.
Two strains of a novel basidiomycetous yeast species were isolated from the gut of wood-boring larvae collected in the Baotianman Nature Reserve, the central China. Sequence analysis of the D1/D2 domains of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) regions showed that these yeasts belong to the Bulleromyces clade and formed a cluster together with eleven undescribed Cryptococcus species. The novel species differed from its closest known species, Cryptococcus rajasthanensis, by 3.3 % divergence (15 substitutions and 6 gaps over 630 bases) in the D1/D2 domains, and by 13.4 % divergence (41 substitutions and 27 gaps over 508 bases) in the ITS regions. Physiologically, the fermentation of glucose, galactose, sucrose, trehalose, and raffinose in Durham tubes was observed for the strains of this new yeast. Based on the phenotypical and molecular characteristics presented, the two strains are proposed as a new species, Cryptococcus nanyangensis sp. nov., with the type strain KCY-1T (=CICC 1976T = CBS 12474T).  相似文献   

3.
Strain DMKU-SP105T representing a novel yeast species was isolated from the external surface of a sugarcane leaf (Saccharum officinarum L.) collected from a sugarcane plantation field in Phichit province, Thailand. On the basis of sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, the strain DMKU-SP105T differed by 7–16 substitutions in the D1/D2 region of LSU rRNA gene and 6–22 substitutions in the ITS region from a group of related species, Papiliotrema aspenensis, Papiliotrema odontotermitis, Papiliotrema rajasthanensis and Papiliotrema laurentii. A phylogenetic analysis based on the concatenated sequences of ITS region and the D1/D2 region of the LSU rRNA gene indicated that strain DMKU-SP105T belongs to the laurentii clade of Papiliotrema in the Tremellales and is distinct from other related species in the clade. It therefore represents a novel species of the genus Papiliotrema although the formation of basidiospores was not observed. The name Papiliotrema phichitensis f.a., sp. nov. is proposed. The type is DMKU-SP105T (=?CBS 13390T?=?BCC 61187T?=?NBRC 109699T).  相似文献   

4.
《Fungal biology》2022,126(9):587-608
Lichens are well-known examples of complex symbiotic associations between organisms from different Kingdoms. Microfungi in particular, establish diverse associations with the hosting lichen thallus, as species-specific parasites or transient co-inhabitants. The whole community of lichen-associated fungi constitute the ‘lichen mycobiome’ comprising both ascomycetes and basidiomycetes, including filamentous and yeast taxa. Metabarcoding results and microscopy analyses show that in some thalli, basidiomycetes are frequent lichen-associated fungi but still only a few species could be axenically isolated and morphologically characterized. Within a broad project aiming at characterizing the mycobiome diversity by culture-dependent and independent approaches in two lichen species selected as reference models – Rhizoplaca melanophthalma and Tephromela atra, we succeed in isolating and culturing 76 new strains of basidiomycetous yeasts. The lichen thalli were collected in different mountain regions worldwide and at relatively high elevation. The yeast strains were isolated on different growth media and were studied for their morphological and genetic diversity. Nuclear internal transcribed spacer (ITS) and ribosomal large subunit (LSU) sequence analyses identified them to belong to ten families within the orders Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes, Tremellomycetes and Ustilaginomycetes. The yeasts here detected showed patterns of host-preference in a few cases and they are potentially related to the ecological conditions.  相似文献   

5.
In this study, yeasts associated with lignocellulosic materials in Brazil, including decaying wood and sugarcane bagasse, were isolated, and their ability to produce xylanolytic enzymes was investigated. A total of 358 yeast isolates were obtained, with 198 strains isolated from decaying wood and 160 strains isolated from decaying sugarcane bagasse samples. Seventy-five isolates possessed xylanase activity in solid medium and were identified as belonging to nine species: Candida intermedia, C. tropicalis, Meyerozyma guilliermondii, Scheffersomyces shehatae, Sugiyamaella smithiae, Cryptococcus diffluens, Cr. heveanensis, Cr. laurentii and Trichosporon mycotoxinivorans. Twenty-one isolates were further screened for total xylanase activity in liquid medium with xylan, and five xylanolytic yeasts were selected for further characterization, which included quantitative analysis of growth in xylan and xylose and xylanase and β-d-xylosidase activities. The yeasts showing the highest growth rate and cell density in xylan, Cr. laurentii UFMG-HB-48, Su. smithiae UFMG-HM-80.1 and Sc. shehatae UFMG-HM-9.1a, were, simultaneously, those exhibiting higher xylanase activity. Xylan induced the highest level of (extracellular) xylanase activity in Cr. laurentii UFMG-HB-48 and the highest level of (intracellular, extracellular and membrane-associated) β-d-xylosidase activity in Su. smithiae UFMG-HM-80.1. Also, significant β-d-xylosidase levels were detected in xylan-induced cultures of Cr. laurentii UFMG-HB-48 and Sc. shehatae UFMG-HM-9.1a, mainly in extracellular and intracellular spaces, respectively. Under xylose induction, Cr. laurentii UFMG-HB-48 showed the highest intracellular β-d-xylosidase activity among all the yeast tested. C. tropicalis UFMG-HB 93a showed its higher (intracellular) β-d-xylosidase activity under xylose induction and higher at 30 °C than at 50 °C. This study revealed different xylanolytic abilities and strategies in yeasts to metabolise xylan and/or its hydrolysis products (xylo-oligosaccharides and xylose). Xylanolytic yeasts are able to secrete xylanolytic enzymes mainly when induced by xylan and present different strategies (intra- and/or extracellular hydrolysis) for the metabolism of xylo-oligosaccharides. Some of the unique xylanolytic traits identified here should be further explored for their applicability in specific biotechnological processes.  相似文献   

6.
A total of 515 yeast strains were isolated from the nasal smears of Queensland koalas and their breeding environments in Japanese zoological parks between 2005 and 2012. The most frequent species in the basidiomycetous yeast biota isolated from koala nasal passages was Cryptococcus neoformans, followed by Rhodotorula minuta. R. minuta was the most frequent species in the breeding environments, while C. neoformans was rare. Seven strains representing two novel yeast species were identified. Analyses of the 26S rDNA (LSU) D1/D2 domain and nuclear ribosomal DNA internal transcribed spacer region sequences indicated that these strains represent new species with close phylogenetic relationships to Cryptococcus and Rhodotorula. A sexual state was not found for either of these two novel yeasts. Key phenotypic characters confirmed that these strains could be placed in Cryptococcus and Rhodotorula. The names Cryptococcus lacticolor sp. nov. (type strain TIMM 10013T = JCM 15449T = CBS 10915T = DSM 21093T, DDBJ/EMBL/Genbank Accession No.; AB375774 (ITS) and AB375775 (26S rDNA D1/D2 region), MycoBank ID; MB 802688, Fungal Barcoding Database ID; 3174), and Rhodotorula oligophaga sp. nov. (type strain TIMM 10017T = JCM 18398T = CBS 12623T = DSM 25814T, DDBJ/EMBL/Genbank Accession No.; AB702967 (ITS) and AB702967 (26S rDNA D1/D2 region), MycoBank ID; MB 802689, Fungal Barcoding Database ID; 3175) are proposed for these new species.  相似文献   

7.
Four Gymnodinium species have previously been reported to produce microreticulate cysts. Worldwide, Gymnodinium catenatum strains are conservative in terms of larger subunit (LSU) rDNA and internal transcribed spacer region (ITS) sequences, but only limited information on the molecular sequences of other species is available. In the present study, we explored the diversity of Gymnodinium by incubating microreticulate cysts collected from the Yellow Sea off China. A total of 18 strains of Gymnodinium, from three species, were established. Two of these were identified as Gymnodinium catenatum and Gymnodinium microreticulatum, and the third was described as a new species, Gymnodinium inusitatum. Motile cells of G. inusitatum are similar to those of Gymnodinium trapeziforme, but they only share 82.52% similarity in LSU sequences. Cysts of G. inusitatum are polygonal in shape, with its microreticulate wall composed of approximately 14 concave sections. G. microreticulatum strains differ from each other at 69 positions (88.00% similarity) in terms of ITS sequences, whereas all G. catenatum strains share identical ITS sequences and belonged to the global populations. Phylogenetic analyses, based on LSU sequences, revealed that Gymnodinium species that produce microreticulate cysts are monophyletic. Nevertheless, the genus as a whole appears to be polyphyletic. Paralytic shellfish toxins (PSTs) were found in all G. catenatum strains tested (dominated by 11-hydroxysulfate benzoate analogs and N-sulfocarmaboyl analogs) but not in any of the G. microreticulatum and G. inusitatum strains. Our results support the premise that cyst morphology is taxonomically informative and is a potential feature for subdividing the genus Gymnodinium.  相似文献   

8.
Species delimitation in Cystoderma and Cystodermella was evaluated based on ITS and LSU rDNA sequences as well as morphological data. Two species of Cystoderma are synonymised with C. carcharias and three species with C. jasonis, distinguishing the synonymised taxa as varieties of these accepted species. Analyses of partial LSU rDNA sequences revealed Cystoderma and Cystodermella as distinct monophyletic genera, with Ripartitella representing a well-supported sister group of the latter. Phaeolepiota aurea represents either an unsupported sister group or member of Cystoderma in the phylogenies based on LSU and ITS sequences rDNA data, respectively. The tribe Cystodermateae sensu Singer did not appear monophyletic according to analyses of LSU sequences. On the basis of these data, the phylogenetic relationships among most of the analyzed genera could not be resolved unequivocally.  相似文献   

9.
A basidiomycetous yeast, strain E2A-C3-II, was isolated from a marine sponge (Hymeniacidon sp.) collected at a depth of 6 m in Fildes Bay, King George Island, Antarctica. The phylogenetic analysis revealed that the yeast isolated is related to Leucosporidium drummii, Leucosporidiella muscorum and to the Leucosporidium scottii group, including Leucosporidiella creatinivora and Leucosporidiella yakutica. The analysis of the nucleotide differences and the genetic distances of the D1/D2 domain of the LSU rDNA gene and 5.8S ITS regions support that strain E2A-C3-II represents a new species. The novel species can be distinguished from L. drummii by its ability to assimilate l-sorbose, l-rhamnose, lactose and ribitol. The maximum temperature for growth was 25 °C. On the basis of morphological, biochemical and physiological characterization, and phylogenetic and nucleotide analysis, a novel basidiomycetous yeast species, Leucosporidium escuderoi f.a., sp. nov., is proposed. The type strain is E2A-C3-IIT (=CBS 12734T =CECT 13080T). The Mycobank (http://www.mycobank.org) accession number is MB 804654. The nucleotide sequences of D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions obtained in this work have been deposited in Genbank under the Accession numbers JN181009 and JN197600, respectively.  相似文献   

10.
Three hundred and thirty-seven xylose-utilizing yeast strains were isolated from various natural samples. Among these, 68 strains produced xylitol in the range of 0.1–0.69 g xylitol/g xylose. Thirty-nine xylitol-producing strains were identified to be Candida tropicalis. Ten strains were found belonging to 14 known species in the genus Candida, Cyberlindnera, Meyerozyma, Pichia, Wickerhamomyces, Yamadazyma and Cryptococcus. Two strains were identified to be two Candida species and two strains (DMKU-XE142T and DMKU-XE332) were found to be a novel species. Strain DMKU-XE142T was isolated from tree bark and DMKU-XE332 was obtained from decaying plant leaf collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit rRNA gene (LSU) and the internal transcribed spacer (ITS) region, the two strains were determined to represent a novel Yamadazyma species although formation of ascospores was not observed. The sequences of the D1/D2 region of the LSU rRNA gene and the ITS region of the two strains were identical but differed from Yamadazyma phyllophila, the closest species in terms of pairwise sequence similarity of the D1/D2 region, by 1.7 % nucleotide substitutions and 3.5 % nucleotide substitutions in the ITS region. The name Yamadazyma ubonensis f.a., sp. nov. is proposed (type strain is DMKU-XE142T = BCC 61020T = CBS 12859T).  相似文献   

11.
The marine planktonic dinophyceaen genus Azadinium is a primary source of azaspiracids, but due to their small size its diversity may be underestimated and information on its biogeography is still limited. A new Azadinium species, A. zhuanum was obtained from the East China Sea and Yellow Sea of China by incubating surface sediments. Five strains were established by isolating single germinated cells and their morphology was examined with light microscopy and scanning electron microscopy. Azadinium zhuanum was characterized by a plate pattern of Po, cp, X, 4′, 2a, 6′′, 6C, 5S, 6′′′, 2′′′′, by a distinct ventral pore at the junction of Po, the first and fourth apical plates, and a conspicuous antapical spine. Moreover, Azadinium poporum was obtained for the first time from the Mediterranean by incubating surface sediment collected from Diana Lagoon (Corsica) and a new strain of Azadinium dalianense was isolated from the French Atlantic. The morphology of both strains was examined. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. In addition, LSU sequences were obtained by single cell sequencing of two presumable A. poporum cells collected from the French Atlantic. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences revealed that A. zhuanum was closest to A. polongum. French A. poporum from Corsica (Mediterranean) and from the Atlantic showed some genetic differences but were nested within one of the A. poporum ribotypes together with other European strains. Azadinium dalianense from France together with the type strain of the species from China comprised a well resolved clade now consisting of two ribotypes. Azaspiracid profiles were analyzed for the cultured Azadinium strains using LC–MS/MS and demonstrate that the Mediterranean A. poporum strain produced AZA-2 and AZA-2 phosphate with an amount of 0.44 fg cell−1. Azadinium zhuanum and A. dalianense did not produce detectable AZA. Results of the present study support the view of a high diversity and wide distribution of species belonging to Azadinium. The first record of AZA-2 producing A. poporum from the Mediterranean suggests that this species may be responsible for azaspiracid contaminations in shellfish from the Mediterranean Sea.  相似文献   

12.
In order to investigate the intraspecific variability in Hannaella kunmingensis, 11 isolates, including the type strain, were analyzed for their morphological and biochemical traits. The combined internal transcribed spacer region (ITS), D1/D2 domains of the large subunit rDNA (LSU), and cytochrome b gene were examined using phylogenetic and parsimony network analyses. Our investigations revealed differences in colony morphology as well as differences in 31 out of 64 phenotypic characteristics examined, including growth in lactose, vitamin free medium, xylitol, L-arabinitol, and nitrite. Growth in the presence of 0.1 % cycloheximide was also highlighted in H. kunmingensis. All the 11 strains were conspecific in the LSU; however, variations of about 2.5 % were found in the ITS while isolate CBS 8356 exhibited a 27.3 % divergence from the other strains in the cytochrome b gene. Parsimony network analysis revealed the existence of three haplotypes among the H. kunmingensis strains studied but excluded CBS 8356 from the network connecting these haplotypes. This study contributes to the knowledge of the intraspecific diversity of H. kunmingensis. To accommodate such intraspecific variations, an emendation of the species diagnosis is proposed.  相似文献   

13.
Three strains representing one novel yeast species were isolated from the phylloplanes of the vetiver grasses (DMKU-LV90 and DMKU-LV99T) and sugarcane (DMKU-SP260) collected in Thailand by leaf washing followed by a plating technique. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and the sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer region (ITS), the three strains were found to represent a single novel anamorphic ustilaginomycetous yeast species in the genus Pseudozyma. The name Pseudozyma vetiver sp. nov. is proposed for this novel species. The type strain is DMKU-LV99T (BCC 61021 = CBS 12824). The novel species showed phylogenetic relationships to the other members of the genus Pseudozyma and to teleomorphic fungal genera, namely Ustilago, Sporisorium and Anomalomyces in Ustilaginaceae, Ustilaginales. The three strains showed identical sequences both in the D1/D2 and ITS regions. The Pseudozyma species closest to the novel species in terms of pairwise sequence similarity in the D1/D2 region was Pseudozyma pruni but with 2.3 % nucleotide substitutions (14 nucleotide substitutions and no gaps out of 606 nt). The novel species and P. pruni differed by 10.9 % nucleotide substitutions (75 nucleotide substitutions and 31 gaps out of 691 nt) in the ITS region. The phylogenetic analysis based on the combined sequences of the ITS region and the D1/D2 region of the LSU rRNA gene showed that the novel species was found to be most closely related to Pseudozyma fusiformata but with 2.9 % nucleotide substitutions in the D1/D2 region and 7.4 % nucleotide substitutions in the ITS region.  相似文献   

14.
The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20–25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.  相似文献   

15.
16.
An anamorphic basidiomycetous yeast, which produced a salt-tolerant and thermostable glutaminase, was isolated from soil in Japan and classified in the genus Cryptococcus. Its substrate specificity suggests that this enzyme is an L-glutaminase asparaginase (EC 3.5.1.38). The strain, G60, resembles Cryptococcus laurentii in the taxonomic criteria traditionally employed for yeasts, however it can be distinguished as a separate species based on DNA–DNA reassociation experiments and sequence analysis of the large sub-unit rDNA. Phenotypically, the isolate can be differentiated from C. laurentii by the inability to utilize arbutin as a sole source of carbon. Based on sequence analysis, the strain is related to a group of hymenomycetous yeasts including Bulleromyces albus, Bullera unica, C. laurentii and C. skinneri. The strain, which is formally described as Cryptococcus nodaensis, is industrially important for the formation of the umami taste during production of proteolytic seasonings. Received 28 July 1998/ Accepted in revised form 04 February 1999  相似文献   

17.
Five novel ascosporogenous yeast strains (H382, H396, H409, H433T and H441) were found through a survey of vacuum-packed beef microbiota. Sequence analysis of ITS domain and LSU rRNA genes showed that the new strains represent a distinct lineage within the genus Kazachstania, closely related to Kazachstania lodderae (97.0 % identity) and Kazachstania ichnusensis (96.1 % identity). The main difference of strains H382, H396, H409, H433T and H441 to strains of known Kazachstania species is the maximum growth temperature, which is below 20 °C for the new strains, whereas related species grow at 25 °C. Furthermore, the strains differed from known Kazachstania species in assimilation and fermentation patterns of carbon sources. Based on these characteristics, the five strains are considered to represent a novel species of the genus Kazachstania for which the name Kazachstania psychrophila sp. nov. is proposed. The type strain is H433T (DSM 26230T=CBS 12689T). The Mycobank number of the type strain is MB 803980.  相似文献   

18.
19.
Paramecium novaurelia Beale and Schneller, 1954, was first found in Scotland and is known to occur mainly in Europe, where it is the most common species of the P. aurelia complex. In recent years, two non-European localities have been described: Turkey and the United States of America. This article presents the analysis of intraspecific variability among 25 strains of P. novaurelia with the application of ribosomal and mitochondrial loci (ITS1-5.8S-ITS2, 5′ large subunit rDNA (5′LSU rDNA) and cytochrome c oxidase subunit 1 (COI) mtDNA). The mean distance observed for all of the studied P. novaurelia sequence pairs was p = 0.008/0.016/0.092 (ITS1-5.8S-ITS2/5′LSU rDNA/COI). Phylogenetic trees (NJ/MP/BI) based on a comparison of all of the analysed sequences show that the studied strains of P. novaurelia form a distinct clade, separate from the P. caudatum outgroup, and are divided into two clusters (A and B) and two branches (C and D). The occurrence of substantial genetic differentiation within P. novaurelia, confirmed by the analysed DNA fragments, indicates a rapid evolution of particular species within the Paramecium genus.  相似文献   

20.
Morphological, toxicological and phylogenetic analyses, using the partial LSU gene and internal spacer (ITS) regions of the rDNA gene, were combined to evaluate the intraregional diversity of Alexandrium catenella occurring along the southern coast of Chile. Twenty-two strains isolated from different localities along the wide area of distribution of the species (from 42°S to 55°S) were examined by these three approaches. Morphologically, although the strains showed diagnostic characters according to the species definition, variations in these traits within and between strains were also observed. The absence of an apical or posterior attachment pore, for instance, was observed mainly in old isolates. Indirect connection between the apical and 1′ plates, traits normally seen in other species of the same genus, was also noted in some strains. However, the lack of a ventral pore on the 1′ plate was one of the most distinctive characteristics present in all the Chilean strains. Toxicologically, the Chilean strains were characterized by the dominance of N-sulfocarbamate (C1,2) and gonyautoxins (GTX1–4), but also by the scarcity or absence of saxitoxin. Considering the dominance of these toxins in each strain, at least two distinctive toxin patterns were distinguished. Through rDNA sequence analysis, the Chilean strains were segregated as part of Clade I (North American) of the Alexandrium tamarense species complex. Nevertheless, significant genetic diversity was also observed among the Chilean strains, especially using ITS sequences. Through these three approaches, Chilean strains of A. catenella showed significant intraregional variability, which is appropriate for a native species. However, the distribution of its genetic diversity seems to be inconsistent with the apparent northward expansion observed along the west coast of South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号