首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

2.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

3.
13C discrimination during CO2 assimilation by the terrestrial biosphere   总被引:1,自引:0,他引:1  
Estimates of the extent of the discrimination against13CO2 during photosynthesis (A) on a global basis were made using gridded data sets of temperature, precipitation, elevation, humidity and vegetation type. Stomatal responses to leaf-to-air vapour mole fraction difference (D, leaf-to-air vapour pressure difference divided by atmospheric pressure) were first determined by a literature review and by assuming that stomatal behaviour results in the optimisation of plant water use in relation to carbon gain. Using monthly time steps, modelled stomatal responses toD were used to calculate the ratio of stomatal cavity to ambient CO2 mole fractions and then, in association with leaf internal conductances, to calculate A. Weighted according to gross primary productivity (GPP, annual net CO2 asimilation per unit ground area), estimated A for C3 biomes ranged from 12.9 for xerophytic woods and shrub to 19.6 for cool/cold deciduous forest, with an average value from C3 plants of 17.8. This is slightly less than the commonly used values of 18–20. For C4 plants the average modelled discrimination was 3.6, again slightly less than would be calculated from C4 plant dry matter carbon isotopic composition (yielding around 5). From our model we estimate that, on a global basis, 21% of GPP is by C4 plants and for the terrestrial biosphere as a whole we calculate an average isotope discrimination during photosynthesis of 14.8. There are large variations in A across the globe, the largest of which are associated with the precence or absence of C4 plants. Due to longitudinal variations in A, there are problems in using latitudinally averaged terrestrial carbon isotope discriminations to calculate the ratio of net oceanic to net terrestrial carbon fluxes.  相似文献   

4.
The characteristics of gas exchange and carbon isotope discrimination were determined for a number of lichen species, representing contrasting associations between fungal (mycobiont) and photosynthetic (photobiont) organism. These parameters were evaluated with regard to the occurrence of any CO2-concentrating mechanism (CCM) expressed specifically by the green algal (phycobiont) or cyanobacterial (cyanobiont) partner. Carbon isotope discrimination () fell into three categories. The highest , found in lichens comprising a phycobiont plus cyanobacteria limited to pockets in the thallus (known as cephalodia), ranged from 24 to 28, equivalent to a carbon isotope ratio (13C) of around -32 to-36 vs. Pee Dee Belemnite (PDB) standard. Further evidence was consistent with CO2 supply to the carboxylating system entirely mediated by diffusion rather than a CCM, in that thallus CO2 compensation point and online instantaneous were also high, in the range normally associated with C3 higher plants. For lichens consisting of phycobiont or cyanobiont alone, organic material formed two distinct ranges around 15 (equivalent to a 13C of -23%.). Thallus compensation point and instantaneous were lower in the cyanobiont group, which also showed higher maximum rates of net photosynthesis, whether expressed on the basis of thallus dry weight, chlorophyll content or area. These data provide additional evidence for the activity of a CCM in cyanobiont lichens, which only show photosynthetic activity when reactivated with liquid water. Rates of net CO2 uptake were lower in both phycobiont associations, but were relatively constant across a wide working range of thallus water contents, usually in parallel with on-line . The phycobiont response was consistent whether photosynthesis had been reactivated with liquid water or water vapour. The effect of diffusion limitation could generally be seen with a 3–4 decrease in instantaneous at the highest water contents. The expression of a CCM in phycobiont algae, although reduced compared with that in cyanobacteria, has already been related to the occurrence of pyrenoids in chloroplasts. In view of the inherent requirement of cyanobacteria for some form of CCM, and the smaller pools of dissolved inorganic carbon (DIC = CO2 + HCO inf3 su– + CO inf3 su2– ) associated with phycobiont lichens, it appears that characteristics provide a good measure of the magnitude of any CCM, albeit tempered by diffusion limitation at the highest thallus water contents.Abbreviations ANOVA analysis of variance - CCM CO2-concentrating mechanism - cyanobiont cyanobacterium - DIC CO2 + HCO inf3 su– + CO inf3 su2– (dissolved inorganic carbon) - photobiont photosynthetic organism present in the association - phycobiont green alga - phycobiont + cephalodia green algae + cyanobacteria in cephalodia - Pmax maximum photosynthetic rate - PPFD photosynthetic photon flux density, 400–700 nm - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - carbon isotope discrimination () - 13C carbon isotope ratio () We would like to thank Dr. Enrico Brugnoli (CNR, Porano, Italy) and E.C. Smith (University of Newcastle) for many helpful discussions. Dr. Kristin Palmqvist (Department of Plant Physiology, University of Umeå, Sweden) kindly provided the samples of Peltigera apthosa. In particularly, Cristina Máguas would like to thank to Prof. Fernando Catarino (University of Lisbon) for his support throughout this study. Cristina Máguas has been supported by JNICT-Science Programme studentship (BD/153/90-RN).  相似文献   

5.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

6.
Summary During high salinity stress, -alanine accumulates to high levels in the sea anemone,Bunodosoma cavernata. Following a salinity increase from 26 to 40 -alanine increased 28-fold from 1.5 to 41.9 moles/g dry weight. Both whole animal studies and experiments with cell free homogenates indicate that under high salinity conditions an increase in the rate of -alanine synthesis from aspartic acid as well as a decrease in the rate of -alanine oxidation are responsible for the observed accumulation of -alanine. The rate of aspartic acid decarboxylation to -alanine is about 3 times greater in anemones acclimated to 40 than for those in normal salinity water (26). -alanine oxidation to CO2 and acetyl-CoA proceeds 2.5 to 3 times slower in high salinity adaptedB. cavernata than in those acclimated to normal salinity. There is always a rapid degradation of uracil to -alanine, but this does not change with salinity.Abbreviations CASF cold acid soluble fraction - FAA free amino acids - MES 2(N-morpholino) ethane sulfonic acid - NPS ninhydrin positive substances - PCA perchloric acid - TCA trichloroacetic acid  相似文献   

7.
The clearing of tropical forest for pasture leads to important changes in soil organic carbon (C) stocks and cycling patterns. We used the naturally occurring distribution of13C in soil organic matter (SOM) to examine the roles of forest- and pasture-derived organic matter in the carbon balance in the soils of 3- to 81-year-old pastures created following deforestation in the western Brazilian Amazon Basin state of Rondônia. Different 13C values of C3 forest-derived C (-28) and C4 pasture-derived C (-13) allowed determination of the origin of total soil C and soil respiration. The 13C of total soil increased steadily across ecosystems from -27.8 in the forest to -15.8 in the 81-year-old pasture and indicated a replacement of forest-derived C with pasture-derived C. The 13C of respired CO2 increased more rapidly from -26.5 in the forest to -17 in the 3- to 13-year-old pastures and indicated a faster shift in the origin of more labile SOM. In 3-year-old pasture, soil C derived from pasture grasses made up 69% of respired C but only 17% of total soil C in the top 10 cm. Soils of pastures 5 years old and older had higher total C stocks to 30 cm than the original forest. This occurred because pasture-derived C in soil organic matter increased more rapidly than forest-derived C was lost. The increase of pasture-derived C in soils of young pastures suggests that C inputs derived from pasture grasses play a critical role in development of soil C stocks in addition to fueling microbial respiration. Management practices that promote high grass production will likely result in greater inputs of grass-derived C to pasture soils and will be important for maintaining tropical pasture soil C stocks.  相似文献   

8.
The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (13C) were used as tracers. Values of 13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average 13C value of CO2 from bacterial respiration was –18.5 ± 3.3. Considering a fractionation of CO2 of 3 by bacterial respiration, 13C value was –15.5, near C4 macrophyte 13C value (–13.1).The average value of total DOC 13C was –26.8 ± 2.4. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.  相似文献   

9.
Intra- and inter-tree variations in 13C/12C ratios were studied within a single clone plantation of 20-year-old Sitka spruce, some of which were treated with mist simulating acidic cloud water. For groups of trees of similar height and the same treatment, sampled at the same whorl height, 13C values for current year needles showed variations (1 SD) of between 0.2 and 0.7. The variations reflect the seasonally averaged influences, on intercellular CO2 concentrations, of slight variations in the microhabitat within a group. For a typical intra-group variation of 0.4 one may be able to distinguish between groups whose mean intercellular CO2 concentrations differ by only 8 ppm. Acid misting resulted in a lowering of 13C values by c. 0.7 (significant at the P0.05 level). This reflects higher intercellular CO2 concentrations for acid misted trees, which can be interpreted in terms of their having assimilation rates c. 10% lower than those of control trees, and might explain the observed reduction in stem growth for acid-misted trees. Without careful attention to sampling strategy, however, these small inter-tree 13C variations can be easily masked by the much larger intra-tree variations with height. Large gradients of increasing needle 13C with height, of c. 0.5 m-1, were observed in two untreated trees of different total height. The gradient was similar for both trees so, though 13C values of both trees were identical close to their leaders (–27), the taller tree displayed much lower values close to the ground (–31). The gradients are believed to reflect lower light levels close to the ground, rather than the accumulation of respired CO2 in the atmosphere. The different height response of stems versus needles, reflected by an increase in 13Cstems13Cneedles with height (for cellulose), is discussed in terms of stem photosynthetic recapture of internally respired CO2.  相似文献   

10.
Patterns of genetic variation in gas-exchange physiology were analyzed in a 15-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation that contains 25 populations grown from seed collected from across the natural distribution of the species. Seed was collected from 33°30 to 53°12 north latitude and from 170 m to 2930 m above sea level, and from the coastal and interior (Rocky Mountain) varieties of the species. Carbon isotope discrimination () ranged from 19.70() to 22.43() and was closely related to geographic location of the seed source. The coastal variety (20.50 (SE=0.21)) was not significantly different from the interior variety (20.91 (0.15)). Instead, most variation was found within the interior variety; populations from the southern Rockies had the highest discrimination (21.53 (0.20)) (lowest water-use efficiency). Carbon isotope discrimination (), stomatal conductance to water vapor (g), the ratio of intercellular to ambient CO2 concentration (ci/ca), and intrinsic water-use efficiency (A/g) were all correlated with altitude of origin (r=0.76, 0.73, 0.74, and –0.63 respectively); all were statistically significant at the 0.01 level. The same variables were correlated with both height and diameter at age 15 (all at P0.0005). Observed patterns in the common garden did not conform to our expectation of higher WUE, measured by both A/g and , in trees from the drier habitats of the interior, nor did they agree with published in situ observations of decreasing g and with altitude. The genetic effect opposes the altitudinal one, leading to some degree of homeostasis in physiological characteri tics in situ.  相似文献   

11.
This paper presents a large data set on carbon isotope composition (13C) of modern soils which were collected under the main vegetation communities along an altitude of 1250–5500m above sea level in the Qinghai-Tibetan Plateau. The 13C values of 198 samples range from –28.6 to –15.1 versus PDB and exhibit a clean relation to different vegetation communities from forest (–25.9±1.2) to shrub (–24.7±1.4), steppe (–23.1±1.3), alpine meadow (–23.6±0.7), alpine desert steppe (–21.3±1.6), and alpine desert (–18.9±2.5). We attributed the observed variability in 13C values to that the mean annual precipitation (MAP) and the mean annual temperature (MAT) are the main factors controlling the distribution of vegetation types in the Tibetan Plateau, which causes the change in carbon isotope composition of modern soils at any given altitude. The result of both linear and nonlinear regression analyses also confirms that MAP and MAT are the major factors affecting the 13C values of surface soils. In the absence of favorable moisture and temperature conditions, low pCO2 alone is not sufficient to cause the distinct changes in carbon isotope composition of modern soils in the Tibetan Plateau. This study provides some fundamental information on the carbon isotope composition of terrestrial carbon pools and bears some practical significance for the use of carbon isotope data to document vegetation changes and environmental conditions of the high plateau in the past.  相似文献   

12.
In the Baltic Sea area, the cladoceran Daphnia magna is commonly found in brackish water rockpools and it has been suggested that salinity is one of the niche dimensions that affects the distribution of the species. The salinity tolerance of D. magna was studied both in physiological and life history experiments. The experimental salinities were freshwater, 4S and 8S. The highest respiration and ammonium excretion rates were measured in the freshwater treatment with decreasing respiration and ammonium excretion rates at higher salinities. The lowest O/N ratio (oxygen consumption to ammonium excretion), describing the metabolic status of an organism, was obtained at 8S, although the only significant differences were detected when comparing to 4S treatments. Individual growth rate, reproductive output and population growth rate were highest at 4S. At 8S growth and reproduction were reduced as compared to freshwater and 4S. The life history parameters in the performed experiments indicated higher fitness (expressed as r) as well as more favourable conditions for growth and reproduction at 4S, whereas the O/N ratio was more difficult to interpret and, in this case, gave a less clear picture of the salinity influence.  相似文献   

13.
Salinity of Pyramid Lake increased from 3.7 to 5.5 between 1933 and 1980. Concern over future reductions in overall species richness prompted experiments to assess responses of dominant lake organisms to elevated salinity. Salinity tolerances of three important benthic invertebrates, Hyalella aztecta, Chironomus utahensis, and Heterocypris sp., were tested in controlled laboratory bioassays and also in a semi-natural environment consisting of large (47 m3) mesocosms.Densities of H. azteca in mesocosms were significantly lower at salinities of 8.0 and 11.0 compared with 5.6 controls in year one, but not in 8.5 salinity mesocosms in year two. The 96-h LC50 for H. azteca was high at 19.5. Short-term mortalities of C. utahensis were 100% at salinities of 13.3 and greater. Fifty-seven percent fewer larvae matured from third to fourth instar at 8.9 than at 5.5 salinity in 17 day subacute bioassays. Furthermore, larval chironomid densities and emergence of adults from mesocosms were significantly reduced at salinities of 8.0 and higher compared with controls. Mortality of Heterocypris sp. was 50% at a salinity of 18.6 in laboratory bioassays and populations in mesocosms ranged between 40 and 100% lower at salinities of 8.0 and 11.0 than in controls.Multiple generation mesocosm experiments indicated all three invertebrates were more sensitive to elevated salinity than results of short-term bioassays. Our studies suggest populations of these invertebrates may be reduced from present levels if Pyramid Lake's salinity were to double, although none are expected to be extirpated. Food habit shifts and reduced production of lake fishes are likely consequences of salinity-induced disruption in the benthic invertebrate forage base.  相似文献   

14.
The link between climate-driven river runoff and sole fishery yields observed in the Gulf of Lions (NW Mediterranean) was analysed using carbon- and nitrogen stable isotopes along the flatfish food webs. Off the Rhone River, the main terrestrial (river POM) and marine (seawater POM) sources of carbon differed in 13C (–26.11 and –22.36, respectively). Surface sediment and suspended POM in plume water exhibited low 13C (–24.38 and –24.70, respectively) that differed more from the seawater POM than from river POM, demonstrating the dominance of terrestrial material in those carbon pools. Benthic invertebrates showed a wide range in 15N (mean 4.30 to 9.77) and 13C (mean –23.81 to –18.47), suggesting different trophic levels, diets and organic sources. Among the macroinvertebrates, the surface (mean 13C –23.71) and subsurface (mean 13C –23.81) deposit-feeding polychaetes were particularly 13C depleted, indicating that their carbon was mainly derived from terrestrial material. In flatfish, 15N (mean 9.42 to 10.93) and 13C (mean –19.95 to –17.69) varied among species, indicating differences in food source and terrestrial POM use. A significant negative correlation was observed between the percentage by weight of polychaetes in the diet and the 13C of flatfish white muscle. Solea solea (the main polychaete feeder) had the lowest mean 13C, Arnoglossus laterna and Buglossidium luteum (crustacean, mollusc and polychaete feeders) had intermediate values, and Solea impar (mollusc feeder) and Citharus linguatula (crustacean and fish feeder) exhibited the highest 13C. Two different benthic food webs were thus identified off the Rhone River, one based on marine planktonic carbon and the other on the terrestrial POM carried by the river. Deposit-feeding polychaetes were responsible for the main transfer of terrestrial POM to upper trophic levels, linking sole population dynamics to river runoff fluctuations.  相似文献   

15.
T. H. E. Heaton 《Oecologia》1987,74(2):236-246
Summary Data are presented for the 15N/14N ratios of 140 indigenous terrestrial plants from a wide variety of natural habitats in South Africa and Namibia. Over much of the area, from high-rainfall mountains to arid deserts, the 15N values of plants lie typically in the range -1 to +6; with no evident differences between C3 plants and C4 grasses. There is a slight correlation between 15N and aridity, but this is less marked than the correlation between the 15N values of animal bones and aridity. At coastal or saline sites, however, the mean 15N values for plants are higher than those at nearby inland or non-saline sites-e.g.: arid Namib coast (10 higher than inland Namib); wet Natal beach (5 higher than inland Natal); saline soils 500 km from coast (4 higher than non-saline soils). High values were also found at one site where there were no marked coastal or saline influences. These environmental effects on the isotopic composition of plants will extend upwards to the animals and humans they support. They therefore have important consequences for the use of nitrogen isotope data in the study of the dietary habits and trophic structures of modern and prehistoric communities.  相似文献   

16.
The food-web structure of the Arctic deep Canada Basin was investigated in summer 2002 using carbon and nitrogen stable isotope tracers. Overall food-web length of the range of organisms sampled occupied four trophic levels, based on 3.8 trophic level enrichment (15N range: 5.3–17.7). It was, thus, 0.5–1 trophic levels longer than food webs in both Arctic shelf and temperate deep-sea systems. The food sources, pelagic particulate organic matter (POM) (13C=–25.8, 15N=5.3) and ice POM (13C=–26.9, 15N=4.1), were not significantly different. Organisms of all habitats, ice-associated, pelagic and benthic, covered a large range of 15N values. In general, ice-associated crustaceans (15N range 4.6–12.4, mean 6.9) and pelagic species (15N range 5.9–16.5, mean 11.5) were depleted relative to benthic invertebrates (15N range 4.6–17.7, mean 13.2). The predominantly herbivorous and predatory sympagic and pelagic species constitute a shorter food chain that is based on fresh material produced in the water column. Many benthic invertebrates were deposit feeders, relying on largely refractory material. However, sufficient fresh phytodetritus appeared to arrive at the seafloor to support some benthic suspension and surface deposit feeders on a low trophic level (e.g., crinoids, cumaceans). The enriched signatures of benthic deposit feeders and predators may be a consequence of low primary production in the high Arctic and the subsequent high degree of reworking of organic material.  相似文献   

17.
The littoral benthos of 18 lakes in Alberta and Saskatchewan ranging in salinity from 3 to 126 (g1–1 TDS) were investigated twice, in the spring and in the summer of 1986. Multiple Ekman dredge samples were taken at water depths of about 0.5, 1.0 and 2 metres in each transect. Two to three transects were used in each lake according to its estimated limnological diversity for a total of 114 stations. A total of 76 species was present varying from 29–31 species in the three lakes of lowest salinity (means of 3.1–5.55) to only 2 species in lakes exceeding 100. Species richness decreased rapidly in salinities greater than 15.Biomass maximum mean of 10.91 g m–2 dry weight (maximum 63.0 g m–2) occurred in culturally eutrophic Humboldt Lake (3.1) but one third as great in other low salinity lakes. However, biomass again increased to about 4.5 gm–2 in two lakes of 15 As the salinity increased still further biomass declined steadily until a minimum of 0.0212 g m–2 was recorded in most saline Aroma Lake (mean 119). Summer biomass (11 lakes) was greater than spring biomass (4 lakes) because some groups such as amphipods, corixids and ostracods became more abundant in summer. Wet weight biomass averaged 15.8 of dry weight biomass.Seasonality (spring or summer), sediment texture and organic matter content, water depth, pH, salinity (TDS) and the presence of aquatic plants ( plant cover) were considered in the matrix involving species dry weight biomass at each of 117 stations. TWINSPAN classification of the samples yielded a dendrogram with 18 indicator species. Successive dichotomies divided these indicator species into four main lake groups based on salinity, i.e., Group I: 3–10 (Gammarus, Glyptotendipes I, Chironomus cf. plumosus), Group II: 10–38%. (Hyalella, Enallagma,Bezzia), Group III: 38–63 (Hygrotus salinarius, Cricotopus ornatus), Group IV: >63 (Dolichopodidae, Ephydra hians). Each of these main groups was subdivided into smaller groups of lakes based on factors such as pH, seasonality (spring or summer species dominance), organic matter and plant cover. Depth of samples played no apparent role.  相似文献   

18.
The influence of salinity on the performance of the sibling species Tisbe holothuriae and T. battagliai in pure and mixed cultures was studied, using laboratory stocks adapted to 32 for over 175 generations. Cohort studies show that T. holothuriae has higher growth rates (Ro and r) at 32, T. battagliai at 20 The latter's life cycle is much less affected by the difference in salinity. De Wit replacement series were used to study competitive interactions. Without water renewal, T. holothuriae eliminates its sibling species in less than 2 generations, apparently through chemical interference. With water renewal, i.e. when exploitation competition becomes relatively more important, T. holothuriae still proves superior at 27 but the two species are competitively almost equal at 20. The two species cooccur in situ during autumn, but their differential predominance at different sites is not explained by the effect of salinity.  相似文献   

19.
Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar 13C values, one group consisting of three populations with mean 13C values ca.-26 and another group with 13C values ca.-28. Less negative 13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar 13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar 13C ranging from-29 to-24. In contrast with the patterns of 13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of 13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar 13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from 13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar 13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients.  相似文献   

20.
Summary Stable carbon isotope ratio analysis is a powerful technique in tracing ecosystem carbon flows, especially those between primary and secondary producers. The distinctive 13C/12C ratios of plant species tend to pass along the food chain with little further fractionation, hence the stable carbon isotope composition of an animal is an important clue to what it has eaten. We compared the stable carbon isotope composition of plants and insects in an old field in Georgia. Of the dominant plants in the old field, 6 were C4 species and had 13C1 values of-10.9 to 12.9, and 7 were C3 species with values of-27.3 to-29.1. Insects known to be feeding on only one plant species had 13C values within 1 of the isotopic composition of the plant. Wasp larvae parasitizing two insect species had 13C values 1.3 and 1.7 higher than that of the food plant. A variety of insects of unknown food habits collected on monospecific and mixed species plant stands in the old field had 13C values ranging from-10.1 to-30.0. Two species of leafhopper and a grasshopper had isotopic compositions within the range of C4 plant values; a tortoise beetle and a lace bug had isotopic compositions within C3 plant values. Other insects had intermediate 13C values, suggesting a mixed diet composed of both C3 and C4 plants. The carbon isotopic ratios of field collected insects appears to be a useful qualitative indicator of their feeding preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号