首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cord blood lymphocytes (CBL) were compared with adult peripheral blood lymphocytes (a-PBL) for their: (i) natural killer (NK) and antibody-dependent cellular cytotoxic (ADCC) activities, (ii) target-binding capacity, (iii) ability to induce soluble natural killer cytotoxic factor (NKCF), (iv) interferon (IFN)-, interleukin 2 (IL-2)-, and lectin-induced augmentation of NK activity, and (v) ability to produce IFN against tumor targets in vitro. CBL depleted of adherent cells and Percoll-separated, NK-enriched subpopulations demonstrated significantly lower NK, ADCC, and target-binding activities compared to a-PBL. CBL produced significantly lower levels of NKCF directed against K562 tumor targets in comparison with a-PBL. Although the NK activity of CBL was not stimulated by either IFN or IL-2 to the same levels shown by a-PBL, the percentage enhancement of cytotoxicity of CBL by IFN and IL-2 was greater than that of a-PBL. Lectin-induced enhancement of cytotoxicity was significantly greater for CBL in comparison with a-PBL. Further, the ability of CBL lymphocytes to produce IFN-gamma in vitro against K562 target cells was significantly lower than that of adult PBL. These studies suggest an association between decreased NK, ADCC, and target-binding activities, induction of NKCF and IFN production by CBL, and increased susceptibility of neonates to infection.  相似文献   

2.
We report herein that defective natural killer (NK) cell cytotoxicity, NK cytotoxic factor (NKCF) production and NK target binding ability of patients with chronic myelogenous leukemia (CML) are functionally restorable after short-term culture (less than 1 week) with recombinant interleukin-2 (rIL-2). We have previously reported that, despite normal to increased numbers of CD16+ large granular lymphocytes, fluorescence-activated-cell-sorted NK cells from CML patients are profoundly defective in NK cell activity and are unable to lyse the CML blast-crisis-derived, NK-sensitive target K562. Since we and others have also previously shown that the defective NK cytotoxicity from CML patients is restorable after 1-4 weeks of incubation with rIL-2, we therefore deemed it important to study the kinetics of IL-2-mediated NK restoration at earlier time intervals (less than 1 week). In the present report, we have demonstrated a significant restoration of NK cell cytotoxicity in CML patients against K562 after 5 days of short-term culture with rIL-2. In addition, recovery of NKCF production and restoration of target-binding capacity to normal levels by NK cells from CML patients were also observed after short-term (less than 1 week) rIL-2 treatment. Finally, we have demonstrated in the present report that adherent cells and peripheral-blood lymphoid cells from CML patients, as compared to normal controls, are unable to produce IL-1 beta and interferon-gamma, respectively, after stimulation with phorbol myristate acetate (IL-1 beta) and phytohemagglutinin-M (interferon-gamma).  相似文献   

3.
This investigation has employed the "innocent bystander" type of experimental design to determine whether soluble cytotoxic factor(s) are released during interactions between human peripheral blood lymphocytes (PBL) and NK-sensitive target cells. PBL cocultured with NK-sensitive Molt-4 or K562 target cells in the lower well of a miniaturized Marbrook culture released natural killer cytotoxic factors (NKCF), which diffused across a 0.2-mu Nucleopore membrane and lysed Molt-4 or K562 target cells cultured in the upper chamber. Coculture of PBL with the NK-resistant Raji or WI-L2 cell lines also induced release of NKCF. These factors were selectively cytotoxic to NK-sensitive targets and lysed Molt-4 and, to a lesser extent, K562 cells. However, Raji, WI-L2, and RPMI 1788 cells were all resistant to lysis. In addition, low density fractions from Percoll density gradients that were enriched for NK effector cells also released increased levels of NKCF during coculture with Molt-4 cells. Lysis of Molt-4 and K562 targets was observed after exposure to NKCF for 48 hr and 60 to 70 hr, respectively. Cellfree supernatants containing NKCF were obtained after a short time of incubation (i.e., within 5 hr of coculture of PBL with NK target cells). The factors were nondialyzable, stable at 56 degrees C for 3 hr, and showed partial loss of activity on storage at 4 degrees C or -20 degrees C for 7 days. These data suggest that NKCF may be involved in the lytic mechanism of human NK cell-mediated cytotoxicity.  相似文献   

4.
Human tumor cell lines were treated with interferon-gamma (IFN-gamma) and then used as target cells in NK assays to measure their ability to form conjugates and stimulate the production of NK cytotoxic factors (NKCF) and to determine their susceptibility to NKCF lysis. K562 and cell lines RS1, RS3, RS7, CAC, and CAP2, obtained from solid brain tumors, were used as targets, and peripheral blood lymphocytes (PBL) from normal donors were used as effector cells. IFN-gamma-treated cell lines had a decreased susceptibility to NKCF lysis and a decreased ability to induce the release of these factors without affecting target-effector cell binding. These results were not due to changes in HLA class I antigen expression, given that the level of HLA class I antigens on the tumor cell lines was not affected, the only exception being K562. In an attempt to further clarify the possible influence of HLA class I expression on K562, IFN-gamma-pretreated K562 cells were separated into HLA class I positive and HLA class I negative subsets for the NK assays. The results showed that both populations behaved similarly upon target-effector conjugate formation, whereas the HLA class I positive population showed a reduced susceptibility to lysis by NK cells and NKCF. Thus, these results establish that NK resistance induced by IFN-gamma is mediated by blocking the target cell's ability to activate NK cell triggering and release of NKCF and by blocking its susceptibility to lysis by these factors. This analysis helps to clarify not only the NK process but also the controversial regulatory effect of IFN in NK lysis.  相似文献   

5.
The mechanism of lysis by cytotoxic T lymphocytes, K cells, and natural killer (NK) cells is imperfectly understood at this point. In this report, material (glycopeptide) isolated from the plasma membranes of K562 cells and fractionated on lectin affinity adsorbents which has been shown to inhibit NK lysis, was used in several specific NK assays to ascertain what stages of the NK-lytic sequence is inhibited by this substance. Results indicate that this glycopeptide (a) does not inhibit initial binding, but dissociates conjugates following initial effector target interactions; (b) inhibits NK lysis beyond Ca-dependent programming, and (c) inhibits lysis induced by NK cell-derived soluble cytotoxic factors (NKCF) in a soluble factor assay. These results suggest that this glycopeptide can effect the lethal hit stage of NK lysis and may represent structures which can associate directly with NKCF.  相似文献   

6.
The mechanism by which interferon (IFN) pretreatment of effector cells augments natural killer (NK) cell-mediated cytotoxicity (CMC) was examined by determining whether IFN has any effect on the production of natural killer cytotoxic factors (NKCF). NKCF are released into the supernatant of co-cultures of murine spleen cells and YAC-1 stimulator cells, and their lytic activity is measured against YAC-1 target cells. It was demonstrated that pretreatment of effector cells with murine fibroblast IFN or polyinosinic-polycytidylic acid (pIC) resulted in the release of NKCF with augmented lytic activity. Evidence indicated that the IFN-induced augmentation of NKCF activity required protein synthesis during the IFN pretreatment period, because concurrent pretreatment with both IFN and cycloheximide abrogated the IFN effect. Protein synthesis, however, is not required for the production of base levels of NKCF because emetine pretreatment of normal spleen cells did not result in a decrease in NKCF production. Furthermore, substantial levels of NKCF activity could be detected in freeze-thaw lysates of freshly isolated spleen cells. Cell populations enriched for NK effector cells, such as nylon wool-nonadherent nude mouse spleen cells, produced lysates with high levels of NKCF activity, whereas lysates of CBA thymocytes were devoid of NKCF activity. Pretreatment of spleen cells with either IFN or pIC resulted in an augmentation of the NKCF activity present in their cell lysates. Taken altogether, these findings suggest that freshly isolated NK cells contain preformed pools of NKCF. Pretreatment of these cells with IFN causes de novo synthesis of additional NKCF and/or activation of preexisting NKCF. According to our model for the mechanism of NK CMC, target cell lysis is ultimately the result of transfer of NKCF from the effector cell to the target cell. The evidence presented here suggests that the IFN-induced augmentation of NK activity could be accounted for by an increase in the synthesis, activation, and/or release of NKCF.  相似文献   

7.
Summary Large granular lymphocytes (LGLs) from patients with malignant disease and from controls were activated by endotoxin or K562 cells, and the supernatants assayed for interleukin-1 (IL-1) activity. Normal LGLs produced significant amounts of IL-1, the activity of which could be neutralized by anti-human IL-1 antiserum. In patients with advanced cancer depressed IL-1 production was observed, which generally correlated with the degree of cytotoxicity produced by the LGLs. Prior treatment of the LGLs with interferon increased production of IL-1 by both control and patient cells. It is suggested that LGLs coming into contact with K562 cells produce IL-1, which is important in the effector-target cell interaction. The decreased cytotoxic activity of LGLs from cancer patients could be related to a defect in IL-1 production, an effect which can be partially corrected by in vitro interferon treatment.Abbreviations IL-1 Interleukin-1 - LGLs large granular lymphocytes - NK cells natural killer cells - IFN interferon - IL-2 interleukin-2 - HCC hepatocellular carcinoma - MN mononuclear cells - LPS lipopolysaccharide Supported in part by grants from the South African Medical Research Council, the National Cancer Association of South Africa, and the South African Chamber of Mines  相似文献   

8.
The biological response modifier OK-432 (Picibanil) (manufactured in Japan) is produced by lyophilization of cultures of the low virulent Su strain of group A Streptococcus pyogenes of human origin. This preparation has been shown to have multiple effects on the immune system and has been used as an anti-cancer therapeutic agent in man. It has been shown that OK-432 augments the cytotoxic activity of human natural killer (NK) cells. We have proposed that natural killer cytotoxic factors (NKCF) derived from NK cells play a role in the mechanism of NK cell-mediated cytotoxicity (CMC). The present study investigates the underlying mechanism of the OK-432-mediated enhancement of NK activity by determining whether OK-432 has an effect on the induction and activity of NKCF produced by NK cells. Treatment of peripheral blood lymphocytes (PBL) with OK-432 for 20 hr and wash resulted in significant augmentation of NK CMC and this enhancement was dependent on the concentration of OK-432 used. Coculture of the OK-432-treated PBL with U937 resulted in a several-fold enhanced production of NKCF in the supernatant. The NKCF produced were similar to those produced by untreated effector cells in that they had the same NK target specificity for lysis. The time kinetics of stimulation of PBL with OK-432 for optimal production of NKCF was found to be 8-12 hr. It was also observed that culture of OK-432-treated PBL in the absence of stimulator cells spontaneously release significant amounts of NKCF into the supernatant. The supernatant containing NKCF was tested for interleukin 2 (IL-2) activity using an IL-2-dependent HT-2 line. It was found that there was no direct correlation between the levels of NKCF and IL-2 activity. The results of this study demonstrate that OK-432 stimulates NK cells to produce NKCF in the presence or absence of stimulator cells. The optimum concentration of OK-432-induced augmentation of NK CMC paralleled that seen for optimum NKCF production, suggesting that one mode of action of OK432 is to enhance NKCF production in a manner reminiscent of IFN and IL-2. The results also point out that OK-432 acts by a mechanism independent of the action of IL-2.  相似文献   

9.
Peripheral blood from patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex (ARC) exhibits poor NK activity in the 51Cr-release assay. The present studies were undertaken to investigate the mechanism underlying the observed defective NK cytotoxic activity. On the basis of our studies on the mechanism of natural killer cell-mediated cytotoxicity (NKCMC), a defective NK cell can result from lack or decreased frequency of effector cells, inability to recognize and bind the target cell, failure to be activated for the release of NK cytotoxic factors (NKCF), and/or failure to synthesize or secrete NKCF. Each of these various possibilities was examined. Single cell analysis revealed that the frequency of NK cells was comparable to controls, and although the NK cells bind to the NK-sensitive target, the bound target is not lysed. These results suggested that the defect in NK cells was not due to depletion of NK cells or to a defect in recognition structures, but that it was located at the postrecognition event. We previously demonstrated that after binding to target, the NK cell is stimulated to release NKCF in the supernatants and NKCF lyse specifically NK-sensitive targets. Accordingly, we investigated the activation of NK cells from AIDS and ARC patients for release of NKCF. After coculture with the stimulator cell, the patients' NK cells failed to release active NKCF in the supernatant. However, the cells released NKCF after stimulation with the lectin Con A or a mixture of TPA and ionophore, albeit to a lesser extent than controls. These results suggested that AIDS and ARC NK cells are defective in the trigger involved in release of NKCF. Further studies were done to investigate whether the immunomodulator IL 2 can restore the functional activity of the defective NK cells. Treatment with IL 2 resulted in augmented NK cytolytic activity, but did not reach control levels of activated cells from normal controls. Furthermore, the patients' IL 2-treated cells recover partially the ability to be stimulated by NK cells and to release NKCF. These results suggest that the trigger for NKCF production and the cytolytic function of the patients' NK cells are regulated by IL 2. By delineating the stage at which the AIDS and ARC NK cells are defective, it is now possible to monitor their recovery and to investigate the effect of various biologic response modifiers in restoring NK activity.  相似文献   

10.
Previous results that were obtained by using supernatants from the co-culture of human peripheral blood lymphocytes and the natural killer susceptible cell line K562 strongly inhibited the growth of various tumor cell lines. No correlation was observed between the susceptibility of the target cell lines to growth inhibition and to lysis by natural killer cells. Rather the spectrum of cytostatic activity and the characteristics of the soluble factor were similar to those of leukoregulin (LRG), a recently described lymphokine. Because of the recent availability of recombinant tumor necrosis factor (TNF) and lymphotoxin (LT), we compare the target selectivity and mechanism of action of these (TNF, LT, LRG) factors with natural killer cytotoxic factor (NKCF). The pattern of target cell susceptibility to growth inhibition or cytolysis by the factors were quite distinct from the pattern observed when cells were exposed to NKCF. Furthermore, antibodies to rLT or rTNF had no effect on LRG cytostasis or NKCF lysis, arguing against a requirement for or synergistic interaction with low levels of LT or TNF. Some of the targets susceptible to LRG were growth inhibited but were not lysed, thereby distinguishing it from NKCF. Furthermore, LRG cytostasis was not inhibited by mannose-6-PO4 or rabbit antibodies to granule cytolysin, both of which block natural killer cytotoxic factor. Therefore, LRG appears to be a cytostatic factor produced by large granular lymphocytes in response to K562 that is distinct from NKCF, TNF, and LT. In addition, NKCF, rLT, rTNF, and LRG, although having cytotoxic/cytostatic activity, are distinct functional factors and may represent a family of lytic factors.  相似文献   

11.
Human peripheral blood lymphocytes cultured in vitro for 2 days in serum-free conditions produced a natural killer (NK) cytotoxic factor (NKCF) which selectively killed NK-susceptible targets. Optimal release of NKCF was achieved under serum-free conditions, while the presence of fetal calf serum inhibited both the production and activity of the factor. Mechanistic studies with NKCF demonstrated that the factor could be adsorbed by the target cells within 6 h, with no further exposure to NKCF required for maximal levels of lysis of the treated targets after additional 30-48 h of incubation, as assessed by a 111I release microcytotoxicity assay. NKCF adsorption to target cells and its cytotoxic activity were inhibited by some phosphorylated sugars (mannose-6PO4 and glucose-6PO4), but not by fructose-6PO4 or nonphosphorylated sugars (mannose, glucose, galactose). These results suggest a role of sugar-6PO4 at the level of interaction of NKCF with NK target cells. This was further supported by the finding that inhibition of target cell glycosylation by tunicamycin also inhibited absorption of NKCF to the target cells and direct killing by NKCF. Therefore, it appears that NKCF is a large granular lymphocyte produced factor which produces lysis as a result of the interaction with glycosylated structures on target cell membranes. Purification studies were performed to begin biochemical characterization of human NKCF. The results indicated that NKCF has an apparent molecular weight between 20,000 and 40,000 dalton. Such approaches with radiolabeled NKCF should be useful for the further study of the biochemical characteristics of human NKCF and of its mechanism of action. The ability to elicit NKCF under serum-free conditions should facilitate its testing, purification, and biochemical characterization.  相似文献   

12.
The effect of four different microtubule (MT) inhibitors on the various stages of human natural killer (NK) cell-mediated cytotoxicity was studied. The MT-disrupting effect of the drugs was monitored by indirect immunofluorescence microscopy and transmission electron microscopy. All the drugs tested, vinblastine sulfate, demecolcine, nocodazole, and taxol, had only a slight inhibitory effect on NK activity. Cells with nonfunctional MT were capable of normal conjugate formation and polarization of actin-containing microfilaments. Natural killer cell cytotoxic factor (NKCF) activity produced by cells with nonfunctional MT was slightly diminished. MT disruption caused enlargement of Golgi cisternae, but did not, however, dissociate the overall structural organization of the Golgi complex. The results indicate that fresh human NK cells are capable of lytic activity without functional MT although MT play a small supportive role in production or secretion of NKCF and mediation of the lytic activity. Previous experiments by us and others have strongly suggested that NK cells mediate their cytolytic activity by directed secretion of toxic material. As NK cells with unfunctional microtubules are capable of close to normal secretion the results presented in this report are not inconsistent with the earlier suggested stimulus-secretion model.  相似文献   

13.
Role of interferon in natural kill of HSV-1-infected fibroblasts   总被引:8,自引:0,他引:8  
The production of interferon during natural killer (NK) assays against HSV-1-infected fibroblasts (NK(HSV-1)) was studied to determine whether this interferon was responsible for inducing the preferential lysis of herpes-virus-infected target cells over uninfected target cells. The interferon produced during NK(HSV-1) assays was analyzed and found to have the properties of HU-IFN-alpha. Little or no IFN was produced during NK assays against uninfected fibroblasts (NK(FS)) or K562 (NK(K562)) cells. Although the appearance of interferon in the culture supernatants seemed to parallel the development of cytotoxicity during NK(HSV-1) assays, the levels of cytotoxicity and IFN generated did not correlate, arguing against a strict quantitative dependence of cytotoxicity upon IFN production. NK(K562) and NK(FS) cytotoxicity developed with little or no production of IFN. When IFN-pretreated effector cells were used, there was still a preferential lysis of infected over uninfected target cells. This preferential lysis by IFN-treated effector cells of infected over uninfected targets was seen as early as 2 hr into the assay. Anti-IFN antibodies added to the NK assays, although neutralizing all the IFN produced during the assays, had no effect on NK(FS) or NK(K562) cytotoxic activity and caused a slightly reduction of NK(HSV-1) activity only in one of three experiments. We conclude that although IFN is generated during NK(HSV-1) assays, this IFN cannot solely account for the increased lysis of infected over uninfected cells and that NK(HSV-1) activity is in some other way dependent on the virus infection.  相似文献   

14.
Treatment of mouse spleen cells with specific anti-H-2 antisera augments their natural killer (NK) activity against K562 cells but not against YAC target tumor cells. The same population of natural killer cells was found to lyse K562 as well as YAC target cells, since (a) depletion of YAC reactive NK cells by absorption on YAC monolayers resulted in a concomitant depletion of anti-K562 NK activity of mouse spleen cells, and (b) both K562 and YAC cells could inhibit their own as well as each others lysis in a cross-competition assay. Anti-H-2 antiserum could not induce anti-K562 NK activity in spleen cells previously depleted of NK cells by absorption on YAC monolayers, indicating that alloantiserum does not act by recruiting otherwise nonreactive cells to become cytotoxic toward K562 target cells. In a target-binding assay, K562 binding of NK cells (T-cell-, B-cell-, and macrophage-depleted spleen cells) increased five- to eightfold in the presence of anti-H-2 antiserum whereas YAC cells binding of NK cells was not increased. H-2 antigens per se did not appear to be involved in the alloantisera effect since anti-NK antiserum directed against a non-H-2 antigen selectively expressed on NK cells, showed a similar selective NK enhancing effect. Protein A, a reagent which binds to the Fc region of immunoglobulin molecules, completely blocked the alloantiserum induced augmentation of anti-K562 NK activity, but did not alter basal NK activity. Moreover, the F(ab)2 fraction of alloantibodies failed to enhance anti-K562 cytotoxic activity of mouse spleen cells, indicating a crucial role for the Fc portion of the alloantibodies attached to the NK cells, in NK augmentation. Utilization of several target cell lines with or without membrane Fc receptors (FcR) revealed that alloantiserum enhanced the lysis of only FcR+ target cells. It is proposed that alloantibody-coated NK cells, as a result of a secondary interaction between attached alloantibody and Fc receptors on target cells, interact more readily with the target cells and thereby cause a higher level of lytic activity.  相似文献   

15.
Summary Carcinomatous pleural effusions of 25 of 32 patients with lung cancer, which had markedly low or no natural killer (NK) activity against K562 cells in a 4 h chromium release assay, contained cells capable of suppressing the lytic function of blood NK cells from normal donors and cancer patients. Suppressor cells were found to be Sephadex G-10- and serum coated plastic dish-adherent monocyte/macrophages in 21 of 25 patients and nylon wool-nonadherent lymphocytes in the other four cases. Nonmalignant pleural effusions did not contain any type of suppressor cells. Twenty-four-hour preincubation of suppressor cells with effector cells was required for mediation of the suppressor function. Neither culture supernatants of effusion cells and NK cells nor effusion supernatants suppressed NK activity. The presence of indomethacin during the preincubation and cytotoxicity assay did not abrogate suppressor function. Suppressor cells did not reduce the number of lymphocyte/K562 conjugates. Contaminating tumor cells were not responsible for the suppression of cytotoxic activity. NK cells precultured with suppressor cells were not able to show cytotoxic function even after removal of the suppressor cells. When effusion mononuclear cells were passed through a Sephadex G-10 column and then preincubated for 24 h, these cells showed a significant increase in NK activity. The results suggest that carcinomatous pleural effusions contain at least two classes of suppressor cells for NK activity, monocyte/macrophages, and nylon wool-nonadherent lymphocytes, which could be one of the causes of impaired NK activity in carcinomatous pleural effusions.  相似文献   

16.
We have shown recently that alteration of the membrane fluidity of either effector or target cells results in significant and selective inhibition of NK cell-mediated cytotoxicity (NK CMC). However, the localization of the defective stage in the NK lytic pathway is not known. In the present study, we show that rigidification of the NK-sensitive U937 target cell membrane by lipid modulation reduces its sensitivity to lysis by NK cytotoxic factor (NKCF). This resistance was not due to loss of NKCF binding sites on the target cell because target cells with rigid membranes absorbed more NKCF than control cells. The enhanced ability to absorb NKCF by membrane modification was supported by data showing that NK-resistant Raji cells lacking NKCF-binding sites absorb NKCF after lipid modification. Furthermore, consistent with the lipophilic nature of NKCF, synthetic lipid vesicles absorb NKCF. In contrast to membrane rigidification, membrane fluidization of the target cell did not change the target cell properties. Rigidification of the NK effector cell membrane abrogates it ability to secrete active NKCF when stimulated by target cells or by mitogens. Membrane fluidization of the NK effector cells did not inhibit their ability to release NKCF. The results of these studies demonstrate that inhibition of NK CMC by rigidification of the target cell membrane results in cells that are inhibited in processing bound NKCF to lysis. Inhibition of NK CMC by rigidification of the NK effector cell results in defective trigger for activation of the NKCF release mechanism.  相似文献   

17.
Human natural killer cytotoxic factor (NKCF): role of IFN-alpha   总被引:1,自引:0,他引:1  
The relationship between production of NKCF and IFN-alpha by human lymphocytes was studied. NKCF activity was generated in response to K562-inducer cells. The presence of NKCF in supernatants was always accompanied by antiviral activity, but in several experiments IFN was detected without concomitant NKCF. In no instance was NKCF activity detected in the absence of IFN. Cell lines which were good inducers of IFN-alpha were found to be good inducers of NKCF. NKCF activity of supernatants was completely adsorbed after incubation with MOLT-4 cells, whereas there was only minimal depletion of IFN-alpha activity. Most of the antiviral activity and all of the NKCF activity of preformed supernatants was neutralized by anti-IFN-alpha serum, whereas anti-IFN-gamma serum and pH2 inactivation had minimal effect on either activity. Addition of IFN-alpha to neutralized supernatants restored NKCF activity. These experiments support the hypothesis that IFN-alpha is involved in the modulation of NKCF-lytic activity. Both antiviral and NKCF activities were abrogated when anti-IFN-alpha serum was added to cultures of lymphocytes plus inducer cells (induction phase). The addition of purified IFN-alpha to such cultures was effective in allowing resumption of NKCF activity; however, addition of IFN-gamma to these cultures did not overcome this block. The addition of purified IFN-alpha directly to supernatants generated in the presence of anti-IFN-alpha serum could not restore their NKCF activity, thereby suggesting an additional requirement for IFN-alpha in the production of NKCF. The possible role of IFN-alpha in the generation of NKCF and expression of its lytic activity is discussed.  相似文献   

18.
The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.  相似文献   

19.
We have proposed that lysis of target cells by NK cells is mediated by NK cytotoxic factors (NKCF). According to our model, for a target cell to be NK-sensitive, it must be recognized by the NK cell, it must stimulate the release of NKCF, and it must be sensitive to lysis by these factors. This report examines whether the ability to stimulate release of NKCF is a characteristic restricted to NK-sensitive tumor cells or whether it is also a property of NK-resistant target cells. Many different types of cell lines were tested for their ability to stimulate release of NKCF in the human, rat, and murine systems. It was found that mycoplasma-free NK-sensitive cell lines, resistant cell lines, and Con A could stimulate the release of NKCF. Many different types of cell lines grown in suspension or in monolayers were found to be effective stimulators, including T or B lymphoid, myeloid, and those of histiocytic origin. Cells cultured in the absence of serum stimulated NKCF release, thus ruling out the possible involvement of serum components in stimulation. NKCF was also produced by xenogeneic combinations of effector and stimulator cells, demonstrating lack of species specificity in NKCF production. Factors stimulated by NK-resistant cell lines or by Con A exhibited the same NK target specificity as supernatants stimulated by NK-sensitive tumor cells. The finding that many different NK-resistant cell lines can stimulate the release of NKCF indicates that there is no apparent NK specificity at the level of induction of NKCF release from human, rat, or murine effector cells. Therefore, the NK specificity of a target cell is determined ultimately by its sensitivity to lysis by NKCF.  相似文献   

20.
The sensitivity of target cells to natural killer (NK) cell-mediated cytotoxicity was investigated. Five target cell lines were examined for susceptibility to killing by activated NK cells in a 4-hour cytotoxicity assay: one of them (K562) was highly sensitive, while the other four were resistant. However, the four NK-resistant target cell lines were fully susceptible to lysis when the assay was extended to 24 h. The cytotoxic cells that killed the NK-resistant target cells in a 24-hour assay were plastic- and nylon wool-nonadherent human peripheral blood mononuclear cells (PBMC) and their cytotoxicity was increased by interferon-alpha, interferon-gamma, and interleukin-2. Further, the cytotoxic activity of PBMC in the long-term assay was associated with large granular lymphocytes purified on a Percoll gradient, that killed the NK-sensitive cell line K562 in a 4-hour assay. All of the above are general criteria to qualify the cytotoxic cells as NK cells. Thus, the NK-resistant phenotype may not reflect absolute immunity to NK-mediated lysis, but it may reflect the different rates at which various target cell lines can be killed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号