首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The secretion of neurotransmitters is a rapid Ca(2+)-regulated process that brings about vesicle fusion with the plasma membrane. This rapid process (< 100 microseconds) involves multiple proteins located at the plasma and vesicular membranes. Because of their homology to proteins participating in constitutive secretion and protein trafficking, they have been characterized extensively. The sequential events that lead these proteins to vesicle docking and fusion are still unclear. We will review recent studies that demonstrate the operative role played by voltage-sensitive Ca(2+) channels and discuss the relevance for the process of evoked transmitter release. The regulation of Ca(2+) influx by syntaxin, synaptosome-associated protein of 25 kDa (SNAP-25) and synaptotagmin, and the reciprocity of these proteins in controlling the kinetic properties of the channel will be discussed. Calcium channel and synaptic proteins expressed in Xenopus oocytes demonstrate a strong functional interaction, which could be pertinent to the mechanism of secretion. First, the voltage-sensitive Ca(2+) channels are negatively modulated by syntaxin: this inhibition is reversed by synaptotagmin. Second, the modulation of N-type Ca(2+) channel activation kinetics strongly suggests that the vesicle could be docked at the plasma membrane through direct interaction with synaptotagmin. Finally, these interactions provide evidence for the assembly of the voltage-sensitive Ca(2+) channel with syntaxin 1A, SNAP-25 and synaptotagmin into an excitosome complex: a putative fusion complex with a potential role in the final stages of secretion. Studies suggest that cross-talk between the synaptic proteins and the channel in a tightly organized complex may enable a rapid secretory response to an incoming signal such as membrane depolarization.  相似文献   

2.
The ATP dependence of the kinetics of Ca2+-dependent exocytosis after flash photolysis of caged Ca2+ was studied by capacitance measurements with submillisecond resolution in single synaptic terminals of retinal bipolar neurons. After control experiments verified that this combination of techniques is valid for the study of exocytosis in synaptic terminals, a comparison was made between the Ca2+ dependence of the rate of exocytosis in synaptic terminals internally dialyzed with MgATP, MgATP-γ-S, or no added Mg2+ or nucleotide. The Ca2+ threshold for release, the maximum rate of release, and the overall relationship between the rate of synaptic vesicle fusion and [Ca2+]i were found to be independent of MgATP. A decrease in the average rate at near-threshold [Ca2+]i was observed in terminals with MgATP-γ-S, but due to the small sample size is of unclear significance. The Ca2+ dependence of the delay between the elevation of [Ca2+]i and the beginning of the capacitance rise was also found to be independent of MgATP. In contrast, MgATP had a marked effect on the ability of terminals to respond to multiple stimuli. Terminals with MgATP typically exhibited a capacitance increase to a second stimulus that was >70% of the amplitude of the first response and to a third stimulus with a response amplitude that was >50% of the first, whereas terminals without MgATP responded to a second stimulus with a response <35% of the first and rarely responded to a third flash. These results suggest a major role for MgATP in preparing synaptic vesicles for fusion, but indicate that cytosolic MgATP may have little role in events downstream of calcium entry, provided that [Ca2+]i near release sites is elevated above ≈30 μM.  相似文献   

3.
  相似文献   

4.
Synaptotagmins represent a family of putative vesicular trafficking proteins. With synaptotagmin 13, we have now identified a novel synaptotagmin, making this one of the largest families of trafficking proteins. Similar to synaptotagmins 3, 4, 6, 7, 9, and 11, synaptotagmin 13 is expressed at highest levels in brain but is also detectable at lower levels in non-neuronal tissues. Synaptotagmin 13 is composed of the canonical domains of synaptotagmins that include an N-terminal transmembrane region and two C-terminal cytoplasmic C2-domains (C2A- and C2B-domain) and a connecting sequence between the transmembrane region and the C2-domains. Different from most other synaptotagmins, however, synaptotagmin 13 does not have an N-terminal sequence preceding the transmembrane region, and features an unusually long connecting sequence that is proline-rich. Furthermore, the C2-domains of synaptotagmin are degenerate and lack almost all of the residues involved in Ca2+ binding, suggesting that synaptotagmin 13 is not a Ca2+-binding protein unlike most other synaptotagmins. Our data demonstrate that synaptotagmins represent a larger and more complex gene family than previously envisioned.  相似文献   

5.
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin‐11 (Syt11), a non‐Ca2+‐binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin‐mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin‐coated pits and bulk endocytosis‐like structures increase on the plasma membrane in Syt11‐knockdown neurons. Structural–functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.  相似文献   

6.
Dopamine (DA) neurons can release DA not just from axon terminals, but also from their somatodendritic (STD) compartment through a mechanism that is still incompletely understood. Using voltammetry in mouse mesencephalic brain slices, we find that STD DA release has low capacity and shows a calcium sensitivity that is comparable to that of axonal release. We find that the molecular mechanism of STD DA release differs from axonal release with regard to the implication of synaptotagmin (Syt) calcium sensors. While individual constitutive knockout of Syt4 or Syt7 is not sufficient to reduce STD DA release, the removal of both isoforms reduces this release by approximately 50%, leaving axonal release unimpaired. Our work unveils clear differences in the mechanisms of STD and axonal DA release.  相似文献   

7.
8.
We combined confocal and live-cell imaging with a novel molecular strategy aimed at revealing mechanisms underlying glucose-regulated insulin vesicle secretion. The 'Ins-C-GFP' reporter monitors secretory peptide targeting, trafficking, and exocytosis without directly tagging the mature secreted peptide. We trapped a green fluorescent protein (GFP) reporter in equimolar quantity within the secretory vesicle by fusing it within the C peptide of proinsulin which only after nascent vesicle sealing and acidification is cleaved from the mature secreted A and B chains of insulin. Ins-C-GFP expression in mouse islets without fail exhibited punctate distribution of green fluorescence by confocal microscopy. Ins-C-GFP colocalized GFP with insulin at vesicle dense cores by immuno-electron microscopy. Glucose stimulation decreased vesicle fluorescence coordinately with enhanced secretion from islets of C-GFP detected by anti-GFP Western blots, and of insulin detected by anti-insulin radioimmunoassay. An insulin secretagogue with a red fluorescent label, glibenclamide BODIPY®TR, was applied to islets expressing Ins-C-GFP. The stimulus response was imaged as a rise in red secretagogue leading to marked loss in green granules. Since neuropeptides as well as peptide hormones are processed from propeptides after sealing of secretory granules, vesicle trapping likely is widely applicable for studies on targeting, trafficking, and regulated release of secretory peptides.  相似文献   

9.
Tomosyn is a cytoplasmic protein that was shown to bind to Syntaxin1 and SNAP-25 through an R-SNARE domain, forming a complex that is almost identical in structure to the neuronal SNARE complex. Tomosyn inhibits exocytosis in various cell types and these effects were attributed to direct competition between tomosyn's SNARE domain and Synaptobrevin/VAMP. In the present study, we investigated the contribution of different domains of tomosyn to its activity. We show that a tomosyn mutant that lacks the entire SNARE domain is a potent inhibitor of vesicle priming, similar to the full-length tomosyn. The SNARE domain of tomosyn failed to inhibit exocytosis, indicating that this domain is not required for the inhibition. In contrast, over-expression of a N-terminally truncated mutant did not lead to inhibition of exocytosis although this mutant still bound to Syntaxin. Our results indicate that tomosyn can inhibit exocytosis independently of its SNARE interaction with Syntaxin and that the integrity of the WD40-domain is crucial for tomosyn's inhibitory function. Furthermore, we demonstrate that the entire N-terminal region of tomosyn, the WD40-repeats and the linker, is required for tomosyn's inhibitory effect.  相似文献   

10.
11.
12.
Elevation of the intracellular calcium concentration ([Ca2+]i) to levels below 1 microm alters synaptic transmission and induces short-term plasticity. To identify calcium sensors involved in this signalling, we investigated soluble C2 domain-containing proteins and found that both DOC2A and DOC2B are modulated by submicromolar calcium levels. Fluorescent-tagged DOC2A and DOC2B translocated to plasma membranes after [Ca2+]i elevation. DOC2B translocation preceded DOC2A translocation in cells co-expressing both isoforms. Half-maximal translocation occurred at 450 and 175 nm[Ca2+]i for DOC2A and DOC2B, respectively. This large difference in calcium sensitivity was accompanied by a modest kinetic difference (halftimes, respectively, 2.6 and 2.0 s). The calcium sensitivity of DOC2 isoforms can be explained by predicted topologies of their C2A domains. Consistently, neutralization of aspartates D218 and D220 in DOC2B changed its calcium affinity. In neurones, both DOC2 isoforms were reversibly recruited to the plasma membrane during trains of action potentials. Consistent with its higher calcium sensitivity, DOC2B translocated at lower depolarization frequencies. Styryl dye uptake experiments in hippocampal neurones suggest that the overexpression of mutated DOC2B alters the synaptic activity. We conclude that both DOC2A and DOC2B are regulated by neuronal activity, and hypothesize that their calcium-dependent translocation may regulate synaptic activity.  相似文献   

13.
The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)-tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP-VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I-K44A impaired GFP-VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I-K44A generated vesicles. A fusion protein containing the VAChT C-terminal tail precipitated the AP-2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C-terminal tail of VAChT interacts with the micro subunit of AP-2 in a di-leucine (L485A/L486A) dependent fashion. These observations suggest that the di-leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.  相似文献   

14.
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells’ functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re‐expression of TRPML1 in neurons. These features were not observed in Niemann–Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.  相似文献   

15.
神经递质释放对维持生物体正常的生命活动有着重要的意义,它是由囊泡运输介导完成的.神经元细胞中囊泡运输涉及许多蛋白质间的相互作用,共同调控这一复杂的过程,可溶性小分子蛋白Complexin(Cpx)在这一过程中起着重要的作用,它同时具有抑制囊泡自发发放和促进囊泡诱发发放的功能.本文综合国内外近20年的研究,着重介绍了Cpx蛋白各部分结构域的功能,及其与一些囊泡分泌相关蛋白,如SNARE复合体、Synaptotagmin(Syt),间的相互作用机制及其最新进展.  相似文献   

16.
The influence of lindane upon phosphatidylinositol hydrolysis in rat brain cortex slices has been investigated using anion-exchange chromatography in order to separate the water-soluble inositol metabolites. Acetylcholine, noradrenaline, and lindane induce the accumulation of myo-[2-3H]inositol as the water-soluble inositol metabolites. However, the cholinergic muscarinic antagonist atropine inhibited the stimulatory response of carbachol, but practically unmodified the effect that lindane has on inositol phosphate production. Also, prazosin anti-1 adrenoreceptors blocked noradrenaline-induced phosphoinositide hydrolysis, but had no effect on lindane-induced increase of inositol phosphate levels. The results suggest that lindane does not exert a general effect on the receptor-stimulated formation of inositol phosphates by both muscarinic and 1-adrenergic agonists.  相似文献   

17.
Real-time voltammetry measurements from cracked PC12 cells were used to analyze the role of synaptotagmin-SNARE interactions during Ca2+-triggered exocytosis. The isolated C2A domain of synaptotagmin I neither binds SNAREs nor inhibits norepinephrine secretion. In contrast, two C2 domains in tandem (either C2A-C2B or C2A-C2A) bind strongly to SNAREs, displace native synaptotagmin from SNARE complexes, and rapidly inhibit exocytosis. The tandem C2 domains of synaptotagmin cooperate via a novel mechanism in which the disruptive effects of Ca2+ ligand mutations in one C2 domain can be partially alleviated by the presence of an adjacent C2 domain. Complete disruption of Ca2+-triggered membrane and target membrane SNARE interactions required simultaneous neutralization of Ca2+ ligands in both C2 domains of the protein. We conclude that synaptotagmin-SNARE interactions regulate membrane fusion and that cooperation between synaptotagmin's C2 domains is crucial to its function.  相似文献   

18.
19.
20.
Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co‐clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high‐resolution total internal reflection imaging of EGFP‐labeled PtdIns markers or syntaxin‐1 at secretory granule release sites in live insulin‐secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin‐1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin‐1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2) by recruitment of a 5′‐phosphatase strongly inhibited Ca2+‐dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin‐1. Cell permeabilization by α‐toxin or formaldehyde‐fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin‐1 at the release site.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号