首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developing pars intermedia (PI) of rabbits of between 14 days post coitum (PC) and one day post partum (PP) have been studied by light and electron microscopy. Cell division is marked until 4th week PC, after which it is reduced. The (PI) loses its homogeneity by the 5th week PC due to localisation both intrinsic and invading cells and blood vessels. Four groups of parenchyma cells are recognisable: PI-glandular cells, interstitial cells, ACT-type cells and a heterogeneous group of dark cells. The ultrastructure of the ACT-type cells in the rabbit PI are here described for the first time. The differentiation of these cell types has been traced from 14 days PC to 32 days PC, in particular ACT-type cells are shown to develop in situ and the significance of this is discussed. In the PI-glandular cells dense cored granules appear first on the 15th day PC which is one day before any nerve connection is made with the primitive neural lobe and more than a week before vascularisation. Thereafter granularity increases until parturition when there is a phase of degranulation. Relatively electron lucent, larger vesicles are not found until 4th week PC.  相似文献   

2.
To better define the role of B cells in the control of pathogenic simian immunodeficiency virus (SIV) replication, six rhesus monkeys were depleted of B cells by intravenous infusion of rituximab (anti-CD20) 28 days and 7 days before intravaginal SIVmac239 inoculation and every 21 days thereafter until AIDS developed. Although the blood and tissues were similarly depleted of B cells, anti-SIV immunoglobulin G (IgG) antibody responses were completely blocked in only three of the six animals. In all six animals, levels of viral RNA (vRNA) in plasma peaked at 2 weeks and declined by 4 weeks postinoculation (PI). However, the three animals prevented from making an anti-SIV antibody response had significantly higher plasma vRNA levels through 12 weeks PI (P = 0.012). The remaining three B-cell-depleted animals made moderate anti-SIV IgG antibody responses, maintained moderate plasma SIV loads, and showed an expected rate of disease progression, surviving to 24 weeks PI without developing AIDS. In contrast, all three of the B-cell-depleted animals prevented from making anti-SIV IgG responses developed AIDS by 16 weeks PI (P = 0.0001). These observations indicate that antiviral antibody responses are critical in maintaining effective control of SIV replication at early time points postinfection.  相似文献   

3.
《Cytotherapy》2020,22(10):581-591
Background aimsUmbilical cord (UC) tissue is recognized as an advantageous source of mesenchymal stromal cells (MSCs), whose therapeutic properties are being actively evaluated in pre-clinical and clinical trials. In recognition of its potential value, storage of UC tissue or cells from UC tissue in newborn stem cell banks is now commonplace; however, strategies for isolating UC-derived MSCs (UCMSCs) from UC tissue have not been standardized. The majority of newborn stem cell banks take one of two approaches to cord tissue processing and cryopreservation: enzymatic digestion of the fresh tissue with cryopreservation of the subsequent cell suspension or cryopreservation of the tissue as a composite whole with later, post-thaw isolation of cells by explantation. Evaluation of UCMSCs derived by these two principal preparation and cryopreservation strategies is important to understanding whether the methods currently employed by newborn stem cell banks retain the desirable clinical attributes of UC cells.MethodsUCMSCs were isolated from 10 UC tissue samples by both explantation and enzymatic digestion methods to allow for comparison of cells from the same donor. Cell isolates from both methods were compared pre- and post-cryopreservation as well as after serial passaging. Cell viability, morphology, growth kinetics, immunophenotype, cytokine secretion and differentiation capacity were evaluated.ResultsUCMSCs could be derived from fresh UC tissue by both explantation and digestion methods and from thawed UC tissue by explantation. Initial cell populations isolated by digestion were heterogeneous and took longer to enrich for UCMSCs in culture than populations obtained by explantation. However, once isolated and enriched, UCMSCs obtained by either method showed no significant difference in viability, morphology, rate of proliferation, surface marker expression, levels of cytokine secretion or differentiation capacity.ConclusionsDerivation of UCMSCs by explantation after thawing UC cryopreserved as a composite tissue may be favorable in terms of initial purity and number of cells achievable by a specific passage. However, we observed no evidence of functional difference between UCMSCs derived by explanation or digestion, suggesting that cells isolated from cryopreserved material obtained by either method maintain their therapeutic properties.  相似文献   

4.
Growth and enzyme development in cell cultures of fetal rat brain were influenced by type of growth medium, cell density, and age of fetal tissue source. Cells grew better in one medium (DMEM), but the other (F12G) enhanced development of choline acetyltransferase activity. One type of growth medium (DMEM) lost efficacy 2 weeks after preparation of complete medium. Cell division rate was density dependent, and choline acetyltransferase development was related to time in culture and cell concentration. Some results suggested division of choline acetyltransferase producing cells. Differences in age of tissue source resulted primarily in differences in growth: cultures of 21 day fetal cells developed more protein per 106 cells inoculated than cultures of cells from younger animals; there was little difference in enzyme activity per culture. Conditions may be controlled such that fetal rat brain cells will grow and express differentiated functions in culture in a predictable manner.  相似文献   

5.
Neurons and gla from the central nervous system of the adult teleost Carassius auratus have been grown as explant cultures of minced brain tissue and as trypsin dissociated cells. These cultures exhibit extensive neurite growth from two neuronal types, have organotypic ultrastructure, and contain electrically active cells. Autoradiographic data indicate that these neurons do not divide in culture, and histological evidence suggests that some mature neurons survive explantation and regenerate processes. However, explantation of brain fragments not containing undifferentiated cells, localized in the ventricular and subventricular zones in the brains of fish, resulted in mesenchymal and glial cell cultures only. Therefore, a contribution to the population of cells in culture by undifferentiated cells must be considered. The cultured neurons remained viable for at least 19 weeks and ultrastructural and electrophysiological data indicate synaptic interaction between cells in explant cultures.  相似文献   

6.
Insulin has long been assigned a key role in the regulation of growth and metabolism during fetal life. Our prior observations indicated that hepatic insulin signaling is attenuated in the late-gestation fetal rat. Therefore, we studied the perinatal ontogeny of hepatic insulin signaling extending from phosphatidylinositol 3-kinase (PI3K) to the ribosome. Initial studies demonstrated markedly decreased insulin-mediated activation of ribosomal protein S6 kinase 1 (S6K1) in the fetus. We found a similar pattern in the regulation of Akt, a kinase upstream from S6K1. Insulin produced minimal activation of insulin receptor substrate (IRS)-1-associated PI3K activity in fetal liver. A modest IRS-2-associated response was seen in the fetus. However, levels of both IRS-1 and IRS-2 were very low in fetal liver relative to adult liver. IRS-1 content and insulin responsiveness of PI3K, Akt, and S6K1 showed a transition to the adult phenotype during the first several postnatal weeks. Examination of downstream insulin signaling to the translational apparatus showed marked attenuation, relative to the adult, of fetal hepatic insulin-mediated phosphorylation of 4E-BP1, the regulatory protein for the eukaryotic initiation factor eIF4E, and ribosomal protein S6. The mammalian target of rapamycin (mTOR), a key integrator of nutritional and metabolic regulation of translation, was present in low amounts, was hypophosphorylated, and was not insulin sensitive in the fetus. Our results indicate that protein synthesis during late-gestation liver development may be mTOR and insulin independent. Reexamination of the role of insulin in fetal liver physiology may be warranted.  相似文献   

7.
Transabdominal chorionic villus biopsy is an established method of obtaining material for analysing fetal chromosomes in the first trimester of pregnancy but has not been widely used for karyotyping in the second and third trimesters, when rapid results are required. The technique was evaluated in two groups of patients, comprising 106 at risk of having a fetus with chromosomal anomalies (105) or X linked disease (one) studied between 13 and 22 weeks (median 15 weeks) of gestation (group 1) and 21 with abnormal fetal findings on ultrasonography studied between 13 and 38 weeks (median 27 weeks) (group 2). Chorionic tissue was collected at the first attempt in 109 patients and at the second attempt in a further 17 independent of the position of the placenta. In one case from group 1 sufficient material for analysis could not be obtained. Seven abnormal karyotypes (six in group 1 and one in group 2) were diagnosed. Karyotyping was unsuccessful in two cases in group 1 (at 17 and 18 weeks'' gestation) and in two in group 2 (at 29 and 38 weeks'' gestation). Follow up of group 1 four weeks after sampling showed no signs of adverse fetal development apart from one unexplained intrauterine fetal death. The findings suggest that chorionic sampling is a safe and valuable additional technique for the late detection of chromosomal defects.  相似文献   

8.
Summary Neural crest cells from quail embryos grown in standard culture dishes differentiate almost entirely into melanocytes within 4 or 5 days when chick embryo extract (CEE) or occasional lots of fetal calf serum (FCS) are included in the medium. Gel fractionation showed that the pigment inducing factor(s) present in these media is of high molecular weight (> 400 K daltons). In the absence of CEE, the neural tube can also stimulate melanocyte differentiation. Culture medium supplemented by selected lots of FCS permits crest cell proliferation but little overt differentiation after up to 2 weeks in culture if the neural tube is removed within 18 h of explantation in vitro. Subsequent addition of CEE to such cultures promotes complete melanocyte differentiation. Crest cells from White leghorn chick embryos also differentiate into melanocytes in the presence of CEE, but do not survive well in its absence. Melanocyte differentiation of crest cells from both quail and chick embryos can by suppressed by culturing under a dialysis membrane, even in the presence of the neural tube and CEE, but neuronal differentiation appears greatly enhanced.  相似文献   

9.
This protocol details a tissue culture technique that allows for quantified regeneration studies on adult retinal ganglion cells (RGCs), that is, CNS neurons. The method may also allow for elucidation of molecular cues, for example of signals relevant in neuronal survival and axon regeneration. The procedure relies on fractioned stripe culture of previously injured retina in defined culture media. Naive dendritic cell contacts of RGCs are preserved, and the system is independent of growth factors. In contrast to other techniques, the protocol is based on tissue grown from adult animals; it dispenses immature co-cultures and evaluates the outgrowth of unmyelinated neurites in a milieu lacking CNS myelin. The technique is suitable for rodent retina from mouse or rat. A growth-conditioning injury of the optic nerve is set 10 days before retinal explantation. Explants are cultured for 5-7 days. Mere preparation of a single retina should be completed within 20 min.  相似文献   

10.
Neurons and glia from the central nervous system of the adult teleost Carassius auratus have been grown as explant cultures of minced brain tissue and as trypsin dissociated cells. These cultures exhibit extensive neurite growth from two neuronal types, have organotypic ultrastructure, and contain electrically active cells. Autoradiographic data indicate that these neurons do not divide in culture, and histological evidence suggests that some mature neurons survive explantation and regenerate processes. However, explantation of brain fragments not containing undifferentiated cells, localized in the ventricular and subventricular zones in the brains of fish, resulted in mesenchymal and glial cell cultures only. Therefore, a contribution to the population of cells in culture by undifferentiated cells must be considered. The cultured neurons remained viable for at least 19 weeks and ultrastructural and electrophysiological data indicate synaptic interaction between cells in explant cultures.  相似文献   

11.
Early embryonic and late fetal mouse myogenic cells showed distinct patterns of perinatal myosin heavy chain (MHC) isoform expression upon differentiation in vitro. In cultures of somite or limb muscle cells isolated from Day 9 to Day 12 embryos, differentiated cells that expressed perinatal MHC were rare and perinatal MHC was not detectable by immunoblotting. In cultures of limb muscle cells isolated from Day 13 to Day 18 fetuses, in contrast, the perinatal MHC isoform was easily detected and was expressed in a substantial percentage of myocytes and myotubes. Analyses of clonally derived muscle colonies and cytosine arabinoside-treated fetal muscle cell cultures suggested that different fetal muscle cell nuclei initiated perinatal MHC expression at different times. In both embryonic and fetal cell cultures, the embryonic MHC isoform was expressed by all differentiated cells examined. A small number of myotubes in fetal muscle cell cultures showed a mosaic distribution of MHC isoform accumulation in which the perinatal MHC isoform accumulated in a restricted region of the myotube near particular nuclei, whereas the embryonic MHC isoform accumulated throughout the myotube. Thus, the myogenic program of fetal, but not embryonic, mouse myogenic cells includes expression of the perinatal MHC isoform upon differentiation in culture.  相似文献   

12.
Summary The response of adult epithelium in contact with heterologous mesenchymes/stromas was studied in three digestive organs (forestomach, glandular stomach, and duodenum). After various tissues were implanted beneath the epithelial layer of adult mice, the epithelial differentiation was examined after sacrifice of animals at intervals up to 24 weeks. In the forestomach and duodenum, the epithelial differentiation was not affected at all by the tissue implantation. In the glandular stomach, in contrast, epithelial cells exhibited altered differentiation in which chief and parietal cells disappeared and were replaced by columnar epithelial cells with PAS-positive granules. These epithelial cells often formed immature villi. Such differentiation-altered columnar epithelium (DACE) was induced by implanting any type of tissue and even by sham operation, indicating that it was induced by disorganization of the tissue-implanted stroma. The size of DACE was significantly influenced by the stage of implanted tissue; 14.5-day fetal mesenchyme induced the largest DACE, and was followed by 16.5-day fetal mesenchyme, adult stroma, and sham operation. These results suggest the importance of stromal organization in maintaining epithelial differentiation in the glandular stomach.  相似文献   

13.
The hydrolysis of triglycerides and cholesteryl esters stored within cells is mediated by the enzyme, hormone-sensitive lipase. In adipose tissue and heart, hormone-sensitive lipase primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production. To determine whether hormone-sensitive lipase is under tissue-specific, developmental regulation, the steady state levels of hormone-sensitive lipase mRNA were determined in normal rats from late fetal life through 2 years of age. Hormone-sensitive lipase mRNA levels did not appear to vary in adipose tissue from epididymal fat pads obtained from animals between 3 weeks and 2 years of age. In heart, hormone-sensitive lipase mRNA levels were lowest in the fetus increased rapidly within the first day postnatally, and then gradually increased to stable adult levels by 2 months that were 3-fold higher than observed in fetal rats. Steady state mRNA levels of hormone-sensitive lipase in the adrenals were lowest in fetal rats, increased 4-fold during the first day and peaked at levels that were 9-fold higher by the end of the first week. Thereafter, levels fell and remained 3- to 4-fold higher than at birth throughout adult life. Hormone-sensitive lipase mRNA was undetectable in testes before 4 weeks of age and increased 25-fold to stable adult levels between 4 and 12 weeks. Thus, hormone-sensitive lipase is differentially expressed and regulated in a tissue-specific fashion during development and aging.  相似文献   

14.
We found neural crest stem cells (NCSCs) in the adult gut. Postnatal gut NCSCs were isolated by flow-cytometry and compared to fetal gut NCSCs. They self-renewed extensively in culture but less than fetal gut NCSCs. Postnatal gut NCSCs made neurons that expressed a variety of neurotransmitters but lost the ability to make certain subtypes of neurons that are generated during fetal development. Postnatal gut NCSCs also differed in their responsiveness to lineage determination factors, affecting cell fate determination in vivo and possibly explaining their reduced neuronal subtype potential. These perinatal changes in gut NCSCs parallel perinatal changes in hematopoietic stem cells, suggesting that stem cells in different tissues undergo similar developmental transitions. The persistence of NCSCs in the adult PNS opens up new possibilities for regeneration after injury or disease.  相似文献   

15.
We have studied the developmental appearance of the O-2A(adult) progenitor cell, a specific type of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell that we have identified previously in cultures prepared from the optic nerves of adult rats. O-2A(adult) progenitors differ from their counterparts in perinatal animals (O-2A perinatal progenitor cells) in antigenic phenotype, morphology, cell cycle time, rate of migration, time course of differentiation into oligodendrocytes or type-2 astrocytes and sensitivity to the lytic effects of complement in vitro. In the present study, we have found that O-2A(adult) progenitor-like cells first appear in the developing optic nerve approximately 7 days after birth and that by 1 month after birth these cells appear to be the dominant progenitor population in the nerve. However, the perinatal-to-adult transition in progenitor populations is a gradual one and O-2A(adult) and O-2A perinatal progenitors coexist in the optic nerve for 3 weeks or more. In addition, cells derived from optic nerves of P21 rats express characteristic features of O-2adult and O-2A perinatal progenitors for extended periods of growth in the same tissue culture dish. Our results thus indicate that the properties that distinguish these two types of O-2A progenitors from each other are expressed in apparently identical environments. Thus, these cells must either respond to different signals present in the environment, or must respond with markedly different behaviours to the binding of identical signalling molecules.  相似文献   

16.
Developmental changes in the lung occur at birth, allowing for the transition from placental to air breathing. Here we have measured nitric oxide synthase (NOS) activity in the porcine lung pre and post partum. NOS activity, which was predominantly calcium dependent, was low in full term fetal tissue compared to that present in lungs from the newborn (5 minutes post partum), 1, 3, 6 and 14 day old animals. No increase in activity was seen when fetal pigs were allowed to breathe for 5 minutes. Specific activity remained low in fetal tissue following partial purification. By contrast, levels of NOS III protein in tissue extracts and in pulmonary arterial endothelial cells, demonstrated by immunohistochemistry, were similar in tissue from the fetal and newborn animals. Thus NOS activity is significantly lower in fetal when compared to postnatal lung tissue despite comparable amounts of NOS III protein being expressed, and birth is followed by an abrupt increase in enzyme activity in animals born at term which correlates with an increase in protein expression.  相似文献   

17.
Ca2+-sensitive K+ (K(Ca)) channels play an important role in mediating perinatal pulmonary vasodilation. We hypothesized that lung K(Ca) channel function may be decreased in persistent pulmonary hypertension of the newborn (PPHN). To test this hypothesis, pulmonary artery smooth muscle cells (PASMC) were isolated from fetal lambs with severe pulmonary hypertension induced by ligation of the ductus arteriosus in fetal lambs at 125-128 days gestation. Fetal lambs were killed after pulmonary hypertension had been maintained for at least 7 days. Age-matched, sham-operated animals were used as controls. PASMC K+ currents and membrane potentials were recorded using amphotericin B-perforated patch-clamp techniques. The increase in whole cell current normally seen in response to normoxia was decreased (333.9 +/- 63.6% in control vs. 133.1 +/- 16.0% in hypertensive fetuses). The contribution of the K(Ca) channel to the whole cell current was diminished in hypertensive, compared with control, fetal PASMC. In PASMC from hypertensive fetuses, a change from hypoxia to normoxia caused no change in membrane potential compared with a -14.6 +/- 2.8 mV decrease in membrane potential in PASMC from control animals. In PASMC from animals with pulmonary hypertension, 4-aminopyridine (4-AP) caused a larger depolarization than iberiotoxin, whereas in PASMC from control animals, iberiotoxin caused a larger depolarization than 4-AP. These data confirm the hypothesis that the contribution of the K(Ca) channel to membrane potential and O2 sensitivity is decreased in an ovine model of PPHN, and this may contribute to the abnormal perinatal pulmonary vasoreactivity associated with PPHN.  相似文献   

18.
The stability and tight integration into adjacent tissue of a novel, degradable, elastic copolymer were examined in an animal model. The biomaterial was used for the reconstruction of a gastric wall defect in Sprague-Dawley rats (n=42) to test the polymeric material under the extreme chemical, enzymatical and mechanical conditions of the stomach. In the control group (n=21) the same defect of the gastric wall was primarily closed without biomaterial implantation. In the baseline group (n=21) the animals were kept under standard conditions without any surgical procedure. The implantation periods were 1 week, 4 weeks and 6 months. The animals' weight was determined preoperatively and before explantation. After explantation, air was pumped into the stomach and the pressure was measured by using a pressure-gauge in order to test whether the surgically produced union of the stomach wall and the polymer patch was gas-tight. After 1 week of implantation time a statistically significant increase of the body weight of the animals was found only in the baseline group. Four weeks and 6 months after the abdominal surgical procedure, a statistically significant increase of the animals' weight was found in the implantation group, the control and the baseline group. Gastrointestinal complications like fistula, perforation or peritonitis did not occur in any of the animals. The measurement of the stomach pressure after maximal gas insufflation did not show significant differences between the implantation group, the control and the baseline group in any of the time periods investigated. Despite very high strains of the gastric wall, no gas leakage was detected. There was a tight connection between the polymer and the adjacent stomach wall in all animals investigated. An adequate mechanical stability of the biomaterial was detectable under the extreme pathophysiological conditions of the stomach milieu. A fast and unfavourable degradation of the degradable polymer was not found in any of the animals. Further investigations are needed to analyse the mechanisms of the tissue integration of the biomaterial as well as the degradation kinetic of the polymer and the process of the tissue remodeling. The knowledge of these processes is necessary to adapt the novel biomaterial and thus prepare it for the use and implantation in different body locations and to develop novel therapeutical options in medicine.  相似文献   

19.
Aromatase cytochrome P450 (P450arom) enzyme activity catalyses the conversion of androgens to estrogens in specific brain areas. During central nervous system (CNS) development local estrogen formation influences sexual differentiation of neural structures, regulates neuroendocrine functions and sexual behavior. A proposed mechanism (and re-examination) of the sexual differentiation of the rodent brain is presented. The metabolic pathway of androgen metabolism by P450arom was characterized in the medial basal hypothalamic (MBH) tissue from male rats during various prenatal and postnatal developmental intervals. The P450arom enzyme activity was determined using a saturating concentration of [3H]testosterone as the substrate, and the rates were quantified by scintillation counting. The MBH P450arom activity was highest during prenatal development (i.e. 3–6 pmol/h/mg protein), declined to moderate levels in newborns and infantile animals (approximately 1 pmol/h/mg protein) and then continued to decline to low activity rates in adult animals (approximately 80 fmol/h/mg protein). Regulation of the P450arom gene was characterized by a series of molecular biology studies where the controlling mechanism for brain P450arom was determined in MBH and amygdaloid tissue sites. Evidence for brain P450arom-specific mRNA in perinatal rats is presented as well as comparisons with rat ovary, a rat Leydig tumor cell line (R2C) and human fetal brain P450arom. Specifically, P450arom gene expression is driven in perinatal rat brain tissue by a different promoter compared to rat ovarian tissue or a R2C cell line, whereas human fetal brain tissue utilizes an almost identical promoter segment to that observed in the rodent. These findings provide an insight into the regulation of brain P450arom gene expression and suggest that there is an additional level of control for the expression of this gene during perinatal development. However, further study is necessary to understand the molecular basis of this complex developmental pattern of brain P450arom expression.  相似文献   

20.
The NS2-3 of BVDV is cleaved in cultured cells infected with cp BVDV but not in those infected with ncp BVDV when tested more than 10 hours post infection. However, it is not known whether cleavage of NS2-3 occurs in vivo. In the present study, cleavage of NS2-3 in cattle persistently infected with BVDV was investigated. All BVDV isolated from PI animals were of the ncp biotype, and NS2-3 proteins were detected in bovine fetal muscular cells infected with these viruses. On the other hand, in the leukocytes of those PI animals, NS3 proteins, products of the cleavage of NS2-3 proteins, were detected. In addition, the NS3 proteins were also detected in leukocytes artificially infected with ncp BVDV. These results reveal that the NS2-3 protein of BVDV is cleaved in leukocytes. Furthermore, NS3 proteins were detected in many tissues of PI cattle, such as lymphoid tissue, brain, thyroid, lung, and kidney. These results suggest that the NS2-3 protein of ncp BVDV cleaves in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号