首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA polymerase I (PolI) functions both in nucleotide excision repair (NER) and in the processing of Okazaki fragments that are generated on the lagging strand during DNA replication. Escherichia coli cells completely lacking the PolI enzyme are viable as long as they are grown on minimal medium. Here we show that viability is fully dependent on the presence of functional UvrA, UvrB, and UvrD (helicase II) proteins but does not require UvrC. In contrast, delta polA cells grow even better when the uvrC gene has been deleted. Apparently UvrA, UvrB, and UvrD are needed in a replication backup system that replaces the PolI function, and UvrC interferes with this alternative replication pathway. With specific mutants of UvrC we could show that the inhibitory effect of this protein is related to its catalytic activity that on damaged DNA is responsible for the 3' incision reaction. Specific mutants of UvrA and UvrB were also studied for their capacity to support the PolI-independent replication. Deletion of the UvrC-binding domain of UvrB resulted in a phenotype similar to that caused by deletion of the uvrC gene, showing that the inhibitory incision activity of UvrC is mediated via binding to UvrB. A mutation in the N-terminal zinc finger domain of UvrA does not affect NER in vivo or in vitro. The same mutation, however, does give inviability in combination with the delta polA mutation. Apparently the N-terminal zinc-binding domain of UvrA has specifically evolved for a function outside DNA repair. A model for the function of the UvrA, UvrB, and UvrD proteins in the alternative replication pathway is discussed.  相似文献   

2.
Repair of DNA-containing pyrimidine dimers   总被引:11,自引:0,他引:11  
Ultraviolet light-induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. The most direct biochemical mechanism responding to this kind of genotoxicity involves direct photoreversal by flavin enzymes that specifically monomerize pyrimidine:pyrimidine dimers monophotonically in the presence of visible light. Incision reactions are catalyzed by a combined pyrimidine dimer DNA-glycosylase:apyrimidinic endonuclease found in some highly UV-resistant organisms. At a higher level of complexity, Escherichia coli has a uvr DNA repair system comprising the UvrA, UvrB, and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway, which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding is associated with localized topological unwinding of DNA. This same protein complex can catalyze an ATPase-dependent 5'----3'-directed strand displacement of D-loop DNA or short single strands annealed to a single-stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled excision-resynthesis step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress-induced protease that also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA, it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.  相似文献   

3.
Formation and enzymatic properties of the UvrB.DNA complex   总被引:2,自引:0,他引:2  
The UvrA, UvrB, and UvrC proteins collectively catalyze the dual incision of a damaged DNA strand in an ATP-dependent reaction. We previously reported (Orren, D. K., and Sancar, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5237-5241) that UvrA delivers UvrB to damaged sites in DNA; upon addition of UvrC to these UvrB.DNA complexes, the DNA is incised. In the present study, we have further characterized both the delivery of UvrB to DNA and the subsequent incision process, with emphasis on the role of ATP in these reactions. The UvrA-dependent delivery of UvrB onto damaged DNA is relatively slow (kon approximately 6 x 10(4) M-1 s-1) and requires ATP hydrolysis (Km = 120 microM). Although ATP enhances the stability of UvrB.DNA complexes (koff = 8.5 x 10(-5) s-1), the isolated UvrB.DNA complexes do not contain any covalently attached or stably bound nucleotide. However, ATP binding is required for the UvrC-dependent dual incision of DNA bound by UvrB. Interestingly, adenosine 5'-(3-O-thio)triphosphate can substitute for ATP at this step. The Km for ATP during incision is 2 microM, but ATP is not hydrolyzed at a detectable level during the incision reaction. The incisions made by UvrB-UvrC are on both sides of the adduct and result in the excision of the damaged nucleotide.  相似文献   

4.
To better define the molecular architecture of nucleotide excision repair intermediates it is necessary to identify the specific domains of UvrA, UvrB, and UvrC that are in close proximity to DNA damage during the repair process. One key step of nucleotide excision repair that is poorly understood is the transfer of damaged DNA from UvrA to UvrB, prior to incision by UvrC. To study this transfer, we have utilized two types of arylazido-modified photoaffinity reagents that probe residues in the Uvr proteins that are closest to either the damaged or non-damaged strands. The damaged strand probes consisted of dNTP analogs linked to a terminal arylazido moiety. These analogs were incorporated into double-stranded DNA using DNA polymerase beta and functioned as both the damage site and the cross-linking reagent. The non-damaged strand probe contained an arylazido moiety coupled to a phosphorothioate-modified backbone of an oligonucleotide opposite the damaged strand, which contained an internal fluorescein adduct. Six site-directed mutants of Bacillus caldotenax UvrB located in different domains within the protein (Y96A, E99A, R123A, R183E, F249A, and D510A), and two domain deletions (Delta2 and Deltabeta-hairpin), were assayed. Data gleaned from these mutants suggest that the handoff of damaged DNA from UvrA to UvrB proceeds in a three-step process: 1) UvrA and UvrB bind to the damaged site, with UvrA in direct contact; 2) a transfer reaction with UvrB contacting mostly the non-damaged DNA strand; 3) lesion engagement by the damage recognition pocket of UvrB with concomitant release of UvrA.  相似文献   

5.
UvrB is the main damage recognition protein in bacterial nucleotide excision repair and is capable of recognizing various structurally unrelated types of damage. Previously we have shown that upon binding of Escherichia coli UvrB to damaged DNA two nucleotides become extrahelical: the nucleotide directly 3' to the lesion and its base-pairing partner in the non-damaged strand. Here we demonstrate using a novel fluorescent 2-aminopurine-menthol modification that the position of the damaged nucleotide itself does not change upon UvrB binding. A co-crystal structure of B. caldotenax UvrB and DNA has revealed that one nucleotide is flipped out of the DNA helix into a pocket of the UvrB protein where it stacks on Phe249 [J.J. Truglio, E. Karakas, B. Hau, H. Wang, M.J. DellaVecchia, B. van Houten, C. Kisker, Structural basis for DNA recognition and processing by UvrB, Nat. Struct. Mol. Biol. 13 (2006) 360-364]. By mutating the equivalent of Phe249 (Tyr249) in the E. coli UvrB protein we show that on damaged DNA neither of the extrahelical nucleotides is inserted into this protein pocket. The mutant UvrB protein, however, resulted in an increased binding and incision of undamaged DNA showing that insertion of a base into the nucleotide-binding pocket is important for dissociation of UvrB from undamaged sites. Replacing the nucleotides in the non-damaged strand with a C3-linker revealed that the extruded base in the non-damaged strand is not directly involved in UvrB-binding or UvrC-mediated incision, but that its displacement is needed to allow access for residues of UvrB or UvrC to the neighboring base, which is directly opposite the DNA damage. This interaction is shown to be essential for optimal 3'-incision by UvrC. After 3'-incision base flipping in the non-damaged DNA strand is lost, indicative for a conformational change needed to prepare the UvrB-DNA complex for 5'-incision.  相似文献   

6.
Escherichia coli ABC excinuclease initiates the removal of dodecanucleotides from damaged DNA in an ATP-dependent reaction. Using a synthetic DNA fragment containing a psoralen adduct at a defined position we have investigated the interaction of the components of the enzyme with substrate by DNase I footprinting. We find that the UvrA subunit binds to DNA specifically in the absence of cofactors and that the binding affinity is stimulated about 4-fold by ATP and only marginally inhibited by ADP. The UvrA.DNA complexes formed in the absence of co-factors or in the presence of either ATP or ADP are remarkably similar. In contrast, adenosine 5'-O-(thiotriphosphate) increases nonspecific binding and completely abolishes the UvrA footprint. The UvrB subunit can associate with the UvrA subunit on DNA in the absence of ATP, but this ternary UvrA.UvrB.DNA complex is qualitatively different from that formed in the presence of ATP. The UvrC subunit elicits no additional change in the UvrA-UvrB footprint. Helicase II (UvrD protein) does not alter the UvrA-UvrB footprint but does appear to interact at the 5'-incision site of the postincision complex. DNA polymerase I fills in the excision gap in the presence or absence of helicase II and apparently releases the ABC excinuclease from the repaired DNA. Nearly 90% of the repair patches are 12 nucleotides long, and this length is not affected by helicase II. We see no evidence by DNase I footprinting for the formation of a multiprotein complex encompassing the UvrA, -B, -C, and -D proteins and DNA polymerase I.  相似文献   

7.
Incision of damaged DNA by the Escherichia coli UvrABC endonuclease requires the UvrA, UvrB, and UvrC proteins as well as ATP hydrolysis. This incision reaction can be divided into three steps: site recognition, preincision complex formation, and incision. UvrAB is able to execute the first two steps in the reaction while the addition of UvrC is required for the incision of DNA. This incision reaction does not require ATP hydrolysis and results in the formation of a tight UvrABC post-incision complex and the generation of an oligomer of approximately 12 nucleotides. At high UvrABC concentrations the specificity of the incision for damaged DNA is decreased and significant incision of undamaged DNA occurs. Analogous to damage specific incision, this type of incision leads to generation of an oligonucleotide, but in this case the size is approximately 9 nucleotides in length. Further evidence shows that the combination of UvrB and UvrC proteins can generate a significant amount of a similar size product on undamaged DNA. In addition, the UvrC protein alone can generate a small amount of the same product. Immunological characterization of the weak nuclease activity seen with UvrC indicates that the activity is very tightly associated with the purified UvrC protein.  相似文献   

8.
DNase I footprint of ABC excinuclease   总被引:15,自引:0,他引:15  
The incision and excision steps of nucleotide excision repair in Escherichia coli are mediated by ABC excinuclease, a multisubunit enzyme composed of three proteins, UvrA, UvrB, and UvrC. To determine the DNA contact sites and the binding affinity of ABC excinuclease for damaged DNA, it is necessary to engineer a DNA fragment uniquely modified at one nucleotide. We have recently reported the construction of a 40 base pair (bp) DNA fragment containing a psoralen adduct at a central TpA sequence (Van Houten, B., Gamper, H., Hearst, J. E., and Sancar, A. (1986a) J. Biol. Chem. 261, 14135-14141). Using similar methodology a 137-bp fragment containing a psoralen-thymine adduct was synthesized, and this substrate was used in DNase I-footprinting experiments with the subunits of ABC excinuclease. It was found that the UvrA subunit binds specifically to the psoralen modified 137-bp fragment with an apparent equilibrium constant of K8 = 0.7 - 1.5 X 10(8) M-1, while protecting a 33-bp region surrounding the DNA adduct. The equilibrium constant for the nonspecific binding of UvrA was Kns = 0.7 - 2.9 X 10(5) M-1 (bp). In the presence of the UvrB subunit, the binding affinity of UvrA for the damaged substrate increased to K8 = 1.2 - 6.7 X 10(8) M-1 while the footprint shrunk to 19 bp. In addition the binding of the UvrA and UvrB subunits to the damaged substrate caused the 11th phosphodiester bond 5' to the psoralen-modified thymine to become hypersensitive to DNase I cleavage. These observations provide evidence of an alteration in the DNA conformation which occurs during the formation of the ternary UvrA.UvrB.DNA complex. The addition of the UvrC subunit to the UvrA.UvrB.DNA complex resulted in incisions on both sides of the adduct but did not cause any detectable change in the footprint. Experiments with shorter psoralen-modified DNA fragments (20-40 bp) indicated that ABC excinuclease is capable of incising a DNA fragment extending either 3 or 1 bp beyond the normal 5' or 3' incision sites, respectively. These results suggest that the DNA beyond the incision sites, while contributing to ABC excinuclease-DNA complex formation, is not essential for cleavage to occur.  相似文献   

9.
We have isolated UvrB-DNA complexes by capture of biotinylated damaged DNA substrates on streptavidin-coated magnetic beads. With this method the UvrB-DNA preincision complex remains stable even in the absence of ATP. For the binding of UvrC to the UvrB-DNA complex no cofactor is needed. The subsequent induction of 3' incision does require ATP binding by UvrB but not hydrolysis. This ATP binding induces a conformational change in the DNA, resulting in the appearance of the DNase I-hypersensitive site at the 5' side of the damage. In contrast, the 5' incision is not dependent on ATP binding because it occurs with the same efficiency with ADP. We show with competition experiments that both incision reactions are induced by the binding of the same UvrC molecule. A DNA substrate containing damage close to the 5' end of the damaged strand is specifically bound by UvrB in the absence of UvrA and ATP (Moolenaar, G. F., Monaco, V., van der Marel, G. A., van Boom, J. H., Visse, R., and Goosen, N. (2000) J. Biol. Chem. 275, 8038-8043). To initiate the formation of an active UvrBC-DNA incision complex, however, UvrB first needs to hydrolyze ATP, and subsequently a new ATP molecule must be bound. Implications of these findings for the mechanism of the UvrA-mediated formation of the UvrB-DNA preincision complex will be discussed.  相似文献   

10.
The incisions in the DNA at the 3'- and 5'-side of a DNA damage during nucleotide excision repair in Escherichia coli occur in a complex consisting of damaged DNA, UvrB and UvrC. The exact requirements for the two incision events, however, are different. It has previously been shown that the 3'-incision requires the interaction between the C-terminal domain of UvrB and a homologous region in UvrC. This interaction, however, is dispensable for the 5'-incision. Here we show that the C-terminal domain of the UvrC protein is essential for the 5'-incision, whereas this domain can be deleted without affecting the 3'-incision. The C-terminal domain of UvrC is homologous with the C-terminal part of the ERCC1 protein which, in a complex with XPF, is responsible for the 5'-incision reaction in human nucleotide excision repair. Both in the UvrC and the ERCC1 domain a Helix-hairpin-Helix (HhH) motif can be indicated, albeit at different positions. Such a motif also has been found in a large variety of DNA binding proteins and it has been suggested to form a structure involved in non-sequence-specific DNA binding. In contrast to the full length UvrC protein, a truncated UvrC protein (UvrC554) lacking the entire ERCC1 homology including the HhH motif no longer binds to ssDNA. Analysis of protein-DNA complexes using bandshift experiments showed that this putative DNA binding domain of UvrC is required for stabilisation of the UvrBC-DNA complex after the 3'-incision has taken place. We propose that after the initial 3'-incision the HhH motif recognises a specific DNA structure, thereby positioning the catalytic site for the subsequent 5'-incision reaction.  相似文献   

11.
Nucleotide excision repair is distinguished from other DNA repair pathways by its ability to process a wide range of structurally unrelated DNA lesions. In bacteria, damage recognition is achieved by the UvrA·UvrB ensemble. Here, we report the structure of the complex between the interaction domains of UvrA and UvrB. These domains are necessary and sufficient for full-length UvrA and UvrB to associate and thereby form the DNA damage-sensing complex of bacterial nucleotide excision repair. The crystal structure and accompanying biochemical analyses suggest a model for the complete damage-sensing complex.Nucleotide excision repair is distinguished from other DNA repair pathways by its ability to process a diverse set of lesions. In bacteria, the initial steps are carried out by three proteins: UvrA, UvrB, and UvrC. The UvrA·UvrB complex conducts surveillance of DNA and recognizes damage. Having located a lesion, UvrA “loads” UvrB onto the DNA at the damaged sites and then dissociates. Damage searching, formation of the UvrB·DNA “preincision” complex, and dissociation of UvrA are regulated by ATP (1). UvrB subsequently recruits the endonuclease UvrC, which catalyzes incisions on either side of the lesion (2, 3). Following incision, UvrC and the damage-containing oligonucleotide are removed by UvrD (helicase II), whereas UvrB remains bound to the gapped DNA and recruits DNA polymerase I for repair synthesis. Sealing of the single-stranded nick completes the repair process and restores the original DNA sequence (4).Since its discovery more than 40 years ago, bacterial nucleotide excision repair has been extensively studied, resulting in a large body of work that describes the protein components and the details of how they operate. Notwithstanding the trove of genetic and biochemical data, several key questions remain unanswered. For example, how does the same set of proteins handle a diverse set of lesions while maintaining specificity? How do UvrA and UvrB cooperate during damage recognition, and what is the precise role of ATP? Ongoing studies in the field, including those described below, aim to address these issues.Recently, we reported the structure of Geobacillus stearothermophilus UvrA and the identification of binding sites for DNA and UvrB (5). We also established that the identified UvrB-binding domain is necessary and sufficient to mediate the UvrA-UvrB interaction and that the isolated interaction domains of UvrA (5) and UvrB (6) bind to each other in solution.To understand the interaction between UvrA and UvrB, we have determined the crystal structure of the complex between the two isolated interaction domains. The structure revealed that UvrA-UvrB interaction interface is largely polar, mediated by several highly conserved charged residues. Site-directed mutagenesis and biochemical characterization of the mutant proteins confirmed the importance of the observed interactions. Based on the interaction domain complex structure, we have constructed a structural model for the full-length UvrA·UvrB ensemble and propose two models for lesion recognition that will serve as a basis for future experiments.  相似文献   

12.
UvrB is the ultimate damage-binding protein in bacterial nucleotide excision repair. Previous AFM experiments have indicated that UvrB binds to a damage as a dimer. In this paper we visualize for the first time a UvrB dimer in a gel retardation assay, with the second subunit (B2) more loosely bound than the subunit (B1) that interacts with the damage. A beta-hairpin motif in UvrB plays an important role in damage specific binding. Alanine substitutions of Y92 or Y93 in the beta-hairpin result in proteins that kill E. coli cells as a consequence of incision in non-damaged DNA. Apparently, both residues are needed to prevent binding of UvrB to non-damaged DNA. The lethality of Y93A results from UvrC-mediated incisions, whereas that of Y92A is due to incisions by Cho. This difference could be ascribed to a difference in stability of the B2 subunit in the mutant UvrB-DNA complexes. We show that for 3' incision UvrC needs to displace this second UvrB subunit from the complex, whereas Cho seems capable to incise the dimer-complex. Footprint analysis of the contacts of UvrB with damaged DNA revealed that the B2 subunit interacts with the flanking DNA at the 3' side of the lesion. The B2 subunit of mutant Y92A appeared to be more firmly associated with the DNA, indicating that even when B1 is bound to a lesion, the B2 subunit probes the adjacent DNA for presence of damage. We propose this to be a reflection of the process that the UvrB dimer uses to find lesions in the DNA. In addition to preventing binding to non-damaged DNA, the Y92 and Y93 residues appear also important for making specific contacts (of B1) with the damaged site. We show that the concerted action of the two tyrosines lead to a conformational change in the DNA surrounding the lesion, which is required for the 3' incision reaction.  相似文献   

13.
An in vitro assay system was constructed using highly purified preparations of UvrA, UvrB, UvrC, UvrD proteins and DNA polymerase I, the objective being to analyse the role of UvrD protein in excision repair of UV-induced DNA damage. UvrABC enzyme-initiated repair synthesis was greatly enhanced by the addition of UvrD protein to the reaction mixture. Further analysis revealed that UvrD protein stimulated introduction of strand breaks in irradiated DNA by UvrABC enzyme but had no effect on the DNA polymerase I reaction. Thus, the site of action of UvrD protein is probably at the incision-excision step and not in later steps in excision repair.  相似文献   

14.
Structure and function of the (A)BC excinuclease of Escherichia coli   总被引:9,自引:0,他引:9  
C P Selby  A Sancar 《Mutation research》1990,236(2-3):203-211
(A)BC excinuclease is the enzymatic activity resulting from the mixture of E. coli UvrA, UvrB and UvrC proteins with damaged DNA. This is a functional definition as new evidence suggests that the three proteins never associate in a ternary complex. The UvrA subunit associates with the UvrB subunit in the form of an A2B1 complex which, guided by UvrA's affinity for damaged DNA binds to a lesion in DNA and delivers the UvrB subunit to the damaged site. The UvrB-damaged DNA complex is extremely stable (t1/2 congruent to 100 min). The UvrC subunit, which has no specific affinity for damaged DNA, recognizes the UvrB-DNA complex with high specificity and the protein complex consisting of UvrB and UvrC proteins makes two incisions, the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to the damaged nucleotide. (A)BC excinuclease recognizes DNA damage ranging from AP sites and thymine glycols to pyrimidine dimers, and the adducts of psoralen, cisplatinum, mitomycin C, 4-nitroquinoline oxide and interstrand crosslinks.  相似文献   

15.
Potential role of proteolysis in the control of UvrABC incision.   总被引:1,自引:0,他引:1       下载免费PDF全文
UvrB is specifically proteolyzed in Escherichia coli cell extracts to UvrB*. UvrB* is capable of interacting with UvrA in an apparently similar manner to the UvrB, however UvrB* is defective in the DNA strand displacement activity normally displayed by UvrAB. Whereas the binding of UvrC to a UvrAB-DNA complex leads to DNA incision and persistence of a stable post-incision protein-DNA complex, the binding of UvrC to UvrAB* leads to dissociation of the protein complex and no DNA incision is seen. The factor which stimulates this proteolysis has been partially purified and its substrate specificity has been examined. The protease factor is induced by "stress" and is under control of the htpR gene. The potential role of this proteolysis in the regulation of levels of active repair enzymes in the cell is discussed.  相似文献   

16.
During nucleotide excision repair (NER) in bacteria the UvrC nuclease and the short oligonucleotide that contains the DNA lesion are removed from the post-incision complex by UvrD, a superfamily 1A helicase. Helicases are frequently regulated by interactions with partner proteins, and immunoprecipitation experiments have previously indicated that UvrD interacts with UvrB, a component of the post-incision complex. We examined this interaction using 2-hybrid analysis and surface plasmon resonance spectroscopy, and found that the N-terminal domain and the unstructured region at the C-terminus of UvrD interact with UvrB. We analysed the properties of a truncated UvrD protein that lacked the unstructured C-terminal region and found that it showed a diminished affinity for single-stranded DNA, but retained the ability to displace both UvrC and the lesion-containing oligonucleotide from a post-incision nucleotide excision repair complex. The interaction of the C-terminal region of UvrD with UvrB is therefore not an essential feature of the mechanism by which UvrD disassembles the post-incision complex during NER. In further experiments we showed that PcrA helicase from Bacillus stearothermophilus can also displace UvrC and the excised oligonucleotide from a post-incision NER complex, which supports the idea that PcrA performs a UvrD-like function during NER in Gram-positive organisms.  相似文献   

17.
Nucleotide excision repair (NER) is a universal DNA repair mechanism found in all three kingdoms of life. Its ability to repair a broad range of DNA lesions sets NER apart from other repair mechanisms. NER systems recognize the damaged DNA strand and cleave it 3', then 5' to the lesion. After the oligonucleotide containing the lesion is removed, repair synthesis fills the resulting gap. UvrB is the central component of bacterial NER. It is directly involved in distinguishing damaged from undamaged DNA and guides the DNA from recognition to repair synthesis. Recently solved structures of UvrB from different organisms represent the first high-resolution view into bacterial NER. The structures provide detailed insight into the domain architecture of UvrB and, through comparison, suggest possible domain movements. The structure of UvrB consists of five domains. Domains 1a and 3 bind ATP at the inter-domain interface and share high structural similarity to helicases of superfamilies I and II. Not related to helicase structures, domains 2 and 4 are involved in interactions with either UvrA or UvrC, whereas domain 1b was implicated for DNA binding. The structures indicate that ATP binding and hydrolysis is associated with domain motions. UvrB's ATPase activity, however, is not coupled to the separation of long DNA duplexes as in helicases, but rather leads to the formation of the preincision complex with the damaged DNA substrate. The location of conserved residues and structural comparisons with helicase-DNA structures suggest how UvrB might bind to DNA. A model of the UvrB-DNA interaction in which a beta-hairpin of UvrB inserts between the DNA double strand has been proposed recently. This padlock model is developed further to suggest two distinct consequences of domain motion: in the UvrA(2)B-DNA complex, domain motions lead to translocation along the DNA, whereas in the tight UvrB-DNA pre-incision complex, they lead to distortion of the 3' incision site.  相似文献   

18.
Malta E  Moolenaar GF  Goosen N 《Biochemistry》2007,46(31):9080-9088
UvrB plays a key role in bacterial nucleotide excision repair. It is the ultimate damage-binding protein that interacts with both UvrA and UvrC. The oligomeric state of UvrB and the UvrAB complex have been subject of debate for a long time. Using fluorescence resonance energy transfer (FRET) between GFP and YFP fused to the C-terminal end of Escherichia coli UvrB, we unambiguously show that in solution two UvrB subunits bind to UvrA, most likely as part of a UvrA2B2 complex. This complex is most stable when both UvrA and UvrB are in the ATP-bound form. Analysis of a truncated form of UvrB shows that binding to UvrA promotes dimerization of the two C-terminal domain 4 regions of UvrB. The presence of undamaged DNA leads to dissociation of the UvrA2B2 complex, but when the ATPase site of UvrB is inactivated, the complex is trapped on the DNA. When the complex is bound to a damaged site, FRET between the two UvrB subunits could still be detected, but only as long as UvrA remains associated. Dissociation of UvrA from the damage-bound UvrB dimer leads to the reduction of the magnitude of the FRET signal, indicating that the domain 4 regions no longer interact. We propose that the UvrA-induced dimerization of the domain 4 regions serves to shield these domains from premature UvrC binding. Only after specific binding of the UvrB dimer to a damaged site and subsequent release of UvrA is the contact between the domain 4 regions broken, allowing recruitment of UvrC and subsequent incisions.  相似文献   

19.
It is generally accepted that the damage recognition complex of nucleotide excision repair in Escherichia coli consists of two UvrA and one UvrB molecule, and that in the preincision complex UvrB binds to the damage as a monomer. Using scanning force microscopy, we show here that the damage recognition complex consists of two UvrA and two UvrB subunits, with the DNA wrapped around one of the UvrB monomers. Upon binding the damage and release of the UvrA subunits, UvrB remains a dimer in the preincision complex. After association with the UvrC protein, one of the UvrB monomers is released. We propose a model in which the presence of two UvrB subunits ensures damage recognition in both DNA strands. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one of the UvrB monomers, which will subsequently probe one of the DNA strands for the presence of a lesion. When no damage is found, the DNA will wrap around the second UvrB subunit, which will check the other strand for aberrations.  相似文献   

20.
The requirement for nucleotide hydrolysis in the DNA repair mechanism of the Escherichia coli UvrABC protein complex has been analyzed. The DNA-activated UvrAB ATPase activity is part of a helicase activity exhibited by the UvrAB protein complex. The helicase acts only on short duplexes and, therefore, is unlike other helicases such as those involved in DNA replication that unwind long duplexes. The strand displacement activity occurs in the 5'----3' direction and requires either ATP or dATP. The helicase activity is inhibited by UV photoproducts. The absence of this activity in a complex formed with proteolyzed UvrB (UvrB*), a complex also deficient in the endonuclease activity, suggests that this activity is important in the repair mechanism. The UvrAB protein complex may remain bound to a damaged site and by coupling the energy derived from ATP hydrolysis, alter the DNA conformation around the damage site to one that is permissive for endonucleolytic events. The conformational changes may take the form of DNA unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号