首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary aim of the present study was to investigate the overexpression of the rice (Oryza sativa L.) programmed cell death 5 (OsPDCD5) gene in rice plant. Constitutive expression of OsPDCD5 from the cauliflower mosaic virus (CaMV) 35S promoter induced programmed cell death (PCD) in transgenic rice. Programmed cell death was accompanied by typical features, including inhibition of developmental growth, a reduction of fresh weight, degradation of total protein content, and fragmentation of genomic DNA. These results suggest that OsPDCD5 plays an essential role in the regulation of PCD in rice plants.  相似文献   

2.
3.
4.
Numerous reports have predicted/hypothesized a role for probenazole-induced protein (PBZ1) as a molecular marker in rice self-defense mechanism. However, the precise function of PBZ1 remains unknown. In the present study, we examined PBZ1 as a putative cell death marker in rice. For this, we focused our attention on a rice lesion mimic mutant (LMM), spotted leaf 1 ( spl1), which has been used to study the programmed cell death (PCD) phenomenon during lesion development in leaf. Using two-dimensional gel electrophoresis (2-DGE), 18 colloidal Coomassie brilliant blue stained protein spots were found to be differentially expressed in the leaves of spl1 mutant. After analysis of these spots by MALDI-TOF-MS, we identified the PBZ1 protein to be highly inducible in spl1. On the basis of these results, we proceeded to verify whether PBZ1 is highly expressed in the tissues undergoing PCD in rice. To do so, we performed immunoblot analysis and immunolocalization and used transgenic lines carrying the PBZ1 promoter fused with GFP. Results demonstrated that the expression levels and localizations of PBZ1 dramatically coincided with tissues undergoing PCD, namely, during leaf senescence, root aerenchyma formation, coleoptiles senescence, root cap, and seed aleurone layer. Furthermore, localization of the PBZ1 protein was also tightly correlated with TUNEL signal in the seed aleurone layer. As DNA fragmentation is a hallmark of PCD, this result clearly indicates a role for PBZ1 in rice tissues undergoing PCD. In conclusion, our results provide strong support for the hypothesis that PBZ1 is a molecular marker in rice defense response, and can serve as a novel potential marker for cell death/PCD in rice.  相似文献   

5.
6.
7.
8.
9.
何光明  邓兴旺 《植物学报》2018,53(4):441-444
程序性细胞死亡(PCD)是生物体受遗传调控的自主细胞死亡现象, 在植物生长发育和抵抗环境胁迫中起重要作用。PCD的发生可受线粒体中活性氧(ROS)诱导。中国科学院遗传与发育生物学研究所李家洋研究组早期的研究发现了1个拟南芥(Arabidopsis thaliana)细胞死亡突变体mod1, 并暗示植物细胞中存在叶绿体与线粒体之间的信号交流调控PCD, 但其中的具体作用机制尚不清楚。最近, 他们通过大规模筛选mod1突变体的抑制突变体, 克隆了3个新的抑制基因plNAD- MDHDiT1mMDH1。此3个基因分别编码质体定位的NAD依赖的苹果酸脱氢酶、叶绿体被膜定位的二羧酸转运蛋白1和线粒体定位的苹果酸脱氢酶1, 突变后都可抑制mod1中ROS的积累及PCD的发生。通过对这些基因进行深入的功能分析, 他们论证了苹果酸从叶绿体到线粒体的转运对线粒体中ROS的产生及随后PCD的诱导起重要作用。该研究拓展了我们对植物细胞中细胞器间交流的认识, 为我们深入理解植物PCD发生机制提供了新线索, 是该领域的一项突破性进展。  相似文献   

10.
王玲  郭长奎  任丁 《植物学报》2017,52(1):43-53
MID1编码R-R型的MYB转录因子,对不同的非生物胁迫均有响应,特别是在水稻(Oryza sativa)生殖期会受到干旱胁迫的诱导,进而在一定程度上可以保持花粉的育性并稳定水稻产量。为进一步研究水稻MID1对非生物胁迫的响应网络,利用酵母双杂交系统筛选出与其互作的蛋白因子OsMIP1,并利用双分子荧光互补系统在本氏烟草(Nicotiana benthamiana)细胞中得到验证。结果表明,OsMIP1编码1个预测含有ENTH/ANTH/VHS结构域的跨膜转运蛋白。OsMIP1在根、茎、叶、小穗和胚乳中均有表达。干旱胁迫下,OsMIP1在叶片和生殖器官中表达,特别是在减数分裂后的小花中表达显著上调。这些结果暗示,OsMIP1在花器官抵抗干旱胁迫中起一定的作用。在水稻营养生长阶段,OsMIP1表达还受到包括Na Cl和甘露醇在内的其它非生物胁迫的影响,暗示其可能在其它非生物胁迫调节中也具有一定的作用。植物中关于编码ENTH/ANTH/VHS结构域蛋白的研究很少。通过对MIP1亚家族进化关系进行分析,结果表明,在被子植物中,MIP1可分为6大类,这6大类分别来自被子植物祖先中原本就存在的6个拷贝,在被子植物的进化过程中又经历了多次基因重复和拷贝丢失等事件。MIP1家族成员广泛分布于被子植物中并可能具有抗胁迫等功能。  相似文献   

11.
高等植物的PCD研究进展(一)   总被引:18,自引:2,他引:16  
潘建伟  董爱华  朱睦元 《遗传》2000,22(3):189-192
植物细胞程序性死亡(programmed cell death,PCD)已成为当前生物学的研究热点之一。植物PCD普遍存在于植物器官和个体生长发育过程及与环境相互作用过程中,具有重要的生物学意义。在高等植物生长发育过程中,根冠细胞、导管细胞、绒毡层细胞、胚乳细胞、胚柄细胞、糊粉细胞、大孢子细胞、助细胞和反足细胞等细胞在一定程度上均发生了PCD。另外,衰老也涉及PCD。本文综述了最近几年来与发育有关的PCD研究进展,主要包括高等植物细胞死亡的形式、起因及其PCD的形态、生化特征及高等植物营养器官(根、茎和叶)和生殖器官(花、果实和种子)在其生长发育过程中的PCD。文章最后还对植物PCD的进化和生物学意义作了进一步的讨论。 Abstract:Plant programmed cell death(PCD),the details of which are becoming a focus of intensive research in biology, is a ubiquitous phenomenon and plays an improtant biological role in the develpoment of organs and whole organisms and in interactions with the environment.During higher plant development,root cap cells,tracheary elements(TEs),tapetalcells,endosperm cells,suspensor cells,aleurone cells,megaspore cells,help cells and antipodal cells,etc.undergo PCD to some degree.In addition,senescence also involves PCD.This paper mainly reviewed PCD research progress in higher plant development in recent years,including forms and causes of cell death and PCD morphological and biochemical features in higher plants;PCD in development of nutritive organs(root ,stem and leaf) and reproductive organs(flower ,fruit and seed),evolution and biological rloes of plant PCD were further discussed in the paper.  相似文献   

12.
生长素是最重要的植物激素之一,对植物生长发育起着关键调控作用。生长素作用于植物后,早期生长素响应基因家族Aux/IAA、GH3和SAUR等被迅速诱导,基因表达上调。其中Aux/IAA基因家族编码的蛋白一般由4个保守结构域组成,结构域Ⅰ具有抑制生长素信号下游基因表达的作用,结构域Ⅱ在生长素信号转导中主要被TIR1调控进而影响Aux/IAA的稳定性,结构域Ⅲ/Ⅳ通过与生长素响应因子ARF相互作用调控生长素信号。Aux/IAA基因家族在双子叶植物拟南芥(Arabidopsis thaliana)的器官发育、根形成、茎伸长和叶扩张等方面发挥重要作用;在单子叶植物水稻(Oryza sativa)和小麦(Triticum aestivum)中,主要影响根系发育和株型,但大多数Aux/IAA基因的功能尚不清楚。该文主要从Aux/IAA蛋白的结构、功能和生长素信号转导途径方面综述Aux/IAA家族在拟南芥、禾谷类作物及其它植物中的研究进展,以期为全面揭示Aux/IAA家族基因的生物学功能提供线索。  相似文献   

13.
The Apaf-1 protein is essential for cytochrome c-mediated caspase-9 activation in the intrinsic mammalian pathway of apoptosis. Although Apaf-1 is the only known mammalian homologue of the Caenorhabditis elegans CED-4 protein, the deficiency of apaf-1 in cells or in mice results in a limited cell survival phenotype, suggesting that alternative mechanisms of caspase activation and apoptosis exist in mammals. In Drosophila melanogaster, the only Apaf-1/CED-4 homologue, ARK, is required for the activation of the caspase-9/CED-3-like caspase DRONC. Using specific mutants that are deficient for ark function, we demonstrate that ARK is essential for most programmed cell death (PCD) during D. melanogaster development, as well as for radiation-induced apoptosis. ark mutant embryos have extra cells, and tissues such as brain lobes and wing discs are enlarged. These tissues from ark mutant larvae lack detectable PCD. During metamorphosis, larval salivary gland removal was severely delayed in ark mutants. However, PCD occurred normally in the larval midgut, suggesting that ARK-independent cell death pathways also exist in D. melanogaster.  相似文献   

14.
Grapevine (Vitis vinifera L., cv. Limberger) leaf tissues and suspension-cultured cells were induced to undergo programmed cell death (PCD) by exogenously added methyl jasmonate (MeJA). The elicitor signaling pathway involved in MeJA-induced PCD was further investigated using pharmacological, biochemical and histological approaches. Pharmacological dissection of the early events preceding the execution of MeJA-triggered PCD indicated that this process strongly depends on both, de novo protein and mRNA synthesis. Treatment of leaf discs and cell suspensions with lipase inhibitor Ebelactone B and specific lipoxygenase inhibitor Phenidone blocked MeJA-induced PCD. These results suggest that some chloroplast membrane-derived compound(s) is required for MeJA-induced PCD in grapevine. The progression of MeJAtriggered PCD may be further inhibited by the use of metabolic inhibitors of key enzymes of octadecanoid biosynthesis including AOS, AOC, and OPR indicating that the functional jasmonate biosynthetic pathway is an integral part of the MeJA-induced signal transduction cascade that results in the coordinate expression of events leading to PCD. Finally, the activation of the octadecanoid pathway, as a critical point in MeJA-induced PCD, was independently demonstrated with cellulysin, a macromolecular elicitor acting via octadecanoid signaling. The cellulysin was shown to be a very potent enhancer of MeJA-triggered PCD in grapevine cells.  相似文献   

15.
Salicylic acid (SA) is implicated in the induction of programmed cell death (PCD) associated with pathogen defense responses because SA levels increase in response to PCD-inducing infections, and PCD development can be inhibited by expression of salicylate hydroxylase encoded by the bacterial nahG gene. The acd11 mutant of Arabidopsis (Arabidopsis thaliana L. Heynh.) activates PCD and defense responses that are fully suppressed by nahG. To further study the role of SA in PCD induction, we compared phenotypes of acd11/nahG with those of acd11/eds5-1 and acd11/sid2-2 mutants deficient in a putative transporter and isochorismate synthase required for SA biosynthesis. We show that sid2-2 fully suppresses SA accumulation and cell death in acd11, although growth inhibition and premature leaf chlorosis still occur. In addition, application of exogenous SA to acd11/sid2-2 is insufficient to restore cell death. This indicates that isochorismate-derived compounds other than SA are required for induction of PCD in acd11 and that some acd11 phenotypes require NahG-degradable compounds not synthesized via isochorismate.  相似文献   

16.
Trypanosoma brucei rhodesiense is one of the causative agents of African Trypanosomiasis. Programmed cell death (PCD) is fundamental in the development, homeostasis and immune mechanisms of multicellular organisms. It has been shown that, other than occurring in multicellular organisms, the PCD phenomenon also takes place in unicellular organisms. In the present study, we have found that under high-density axenic culture conditions, bloodstream form of T. b. rhodesiense depicts a PCD-like phenomenon. We investigated the association of the PCD-like phenomenon with expression of trypanosome alternative oxidase (TAO) under low-temperature stress conditions. We observed that bloodstream form of T. b. rhodesiense did not show any PCD but had up-regulated expression of TAO. Inhibition of TAO by the addition of ascofranone caused the development of PCD in bloodstream T. b. rhodesiense under low-temperature stress, implying that expression of TAO may contribute to the inhibition of PCD.  相似文献   

17.
18.
The tomato AGC protein kinase Adi3 is known to function as a suppressor of PCD and silencing of Adi3 leads to spontaneous cell death on leaves and stems. In an effort to isolate Adi3 interacting proteins, a yeast two-hybrid screen was carried out and identified the autophagy protein Atg8h as an Adi3 interactor. This interaction occurred independent of the kinase activity status of Adi3. Silencing of genes involved in autophagy is known to eliminate the restriction of pathogen-induced PCD to a few cells and leads to run away PCD. Cosilencing Adi3 with several autophagy genes lead to the same run away cell death suggesting Adi3 may be involved in autophagic regulation of PCD.  相似文献   

19.
Yeast cells lacking the metacaspase-encoding gene YCA1 (Δyca1) were compared with wild-type (WT) cells with respect to the occurrence, nature and time course of acetic-acid triggered death. We show that Δyca1 cells undergo programmed cell death (PCD) with a rate lower than that of the WT and that PCD in WT cells is caused at least in part by the caspase activity of Yca1p. Since in Δyca1 cells this effect is lost, but z-VAD-fmk does not prevent both WT and Δyca1 cell death, PCD in WT cells occurs via a Yca1p caspase and a non-caspase route with similar characteristics.  相似文献   

20.
In plants, programmed cell death (PCD) is an important mechanism that controls normal growth and development as well as many defence responses. At present, research on PCD in different plant species is actively carried out due to the possibilities offered by modern methods in molecular biology and the increasing amount of genome data. The pine seed provides a favourable model for PCD because it represents an interesting inheritance of seed tissues as well as an anatomically well-described embryogenesis during which several tissues die via morphologically different PCD processes.Key words: conifer, developmental cell death, embryogenesis, megagametophyte, necrotic cell death, pine, seed development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号