首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen individuals with an i(Xq) or idic(Xq) were studied using RFLP analysis in order to determine both parental origin and extent of heterozygosity of the isochromosome and to search for the presence of short-arm material. In five cases the isochromosome was paternally derived, while nine patients had a maternal i(Xq). The analysis of heterozygosity of the nine maternally derived isochromosomes by using Xq markers showed heterozygosity in two cases, suggesting an origin from two homologous X chromosomes. Homozygosity was found at all informative loci in seven cases, which therefore are probably the product of either centromere misdivision or sister-chromatid exchange. Presence of Xp markers was seen both in the three i(Xq) chromosomes which appeared dicentric by cytogenetic analysis and in three additional cytogenetically monocentric cases. Mean parental ages were greater for the maternally derived cases as compared with the paternally derived cases.  相似文献   

2.
Summary The parental origin of five X isochromosomes were determined using 11 DnA markers. The isochromosome was derived from a maternal X chromosome in three cases and from a paternal X chromosome in two. Unexpected heterozygosity was detected for the proximal Xp region in one individual in whom the i(Xq) chromosome was paternally derived. This was confirmed by in situ hybridisation. A mode of formation of isochromosomes by breakage and reunion between the sister chromatids of the arms of an X chromosome is proposed to account for this. Sister chromatid breakage and reunion can be considered as a significant mechanism for the origin of i(Xq) chromosomes.  相似文献   

3.
Isodicentric chromosomes are considered the most common structural abnormality of the human Y chromosome. Because of their instability during cell division, loss of an isodicentric Y seems mainly to lie at the origin of mosaicism in previously reported patients with a 45,X cell line. Here, we report on a similar case, which, however, turned out to be an example of dynamic mosaicism involving isodicentric chromosome Y and isochromosome Y after FISH with a set of chromosome Y-specific probes and multicolor banding. Cytogenetic analyses (GTG-, C-, and Q-banding) have shown three different cell lines: 45,X/46, X,idic(Y)(q12)/46,X,+mar. The application of molecular cytogenetic techniques established the presence of four cell lines: 45,X (48%), 46,X,idic(Y)(q11.23) (42%), 46,X,i(Y)(p10) (6%) and 47,X,idic(Y)(q11.23),+idic(Y)(q11.23) (4%). According to the available literature, this is the first case of dynamic mosaicism with up to four different cell lines involving loss, gain, and rearrangement of an idic(Y)(q11.23). The present report indicates that cases of mosaicism involving isodicentric and isochromosome Ys can be more dynamic in terms of somatic intercellular variability that probably has an underappreciated effect on the phenotype.  相似文献   

4.
Primary amenorrhea refers to absence of spontaneous menarche even after the age of 16. Cytogenetic analysis in two cases with primary amenorrhea, short stature, poorly developed secondary sexual characteristics, and growth retardation were studied. Routine GTG-band analysis of metaphases from peripheral blood leucocytes revealed female karyotype with a 15(ps+) and an isochromosome of X, i(Xq), in one patient and 46,X, i(Xq), in another patient. Ascertainment of the karyotype aided in confirmation of the provisional diagnosis, a better phenotype-genotype correlation to understand clinical heterogeneity in genetic counseling.  相似文献   

5.
To test the centromere misdivision model of isochromosome formation, we have defined the breakpoints of cytogenetically monocentric and dicentric Xq isochromosomes (i(Xq)) from Turner syndrome probands, using FISH with cosmids and YACs derived from a contig spanning proximal Xp. Seven different pericentromeric breakpoints were identified, with 10 of 11 of the i(Xq)s containing varying amounts of material from Xp. Only one of the eight cytogenetically monocentric i(Xq)s demonstrated a single alpha-satellite (DXZ1) signal, consistent with classical models involving centromere misdivision. The remaining seven were inconsistent with such a model and had breakpoints that spanned proximal Xp11.21: one was between DXZ1 and the most proximal marker, ZXDA; one occurred between the duplicated genes, ZXDA and ZXDB; two were approximately 2 Mb from DXZ1; two were adjacent to ALAS2 located 3.5 Mb from DXZ1; and the largest had a breakpoint just distal to DXS1013E, indicating the inclusion of 8 Mb of Xp DNA between centromeres. The three cytologically dicentric i(Xq)s had breakpoints distal to DXS423E in Xp11.22 and therefore contained > or = 12 Mb of DNA between centromeres. These data demonstrate that the majority of breakpoints resulting in i(Xq) formation are in band Xp11.2 and not in the centromere itself. Therefore, we hypothesize that the predominant mechanism of i(Xq) formation involves sequences in the proximal short arm that are prone to breakage and reunion events between sister chromatids or homologous X chromosomes.  相似文献   

6.
Summary We present a method to test if the proportion of 45,X cases resulting from loss of the maternal chromosome or of cases of 46,X,i(Xq) with the isochromosome of maternal origin is different from 1/2. The available data are consistent with the hypothesis that the normal X present in i(Xq) patients originates with equal probabilities in the fathers and mothers of the patientsThis paper was supported in part by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)  相似文献   

7.
戴和平  邓汉湘 《遗传学报》1992,19(4):298-303
本文对三例X染色体结构异常46,X,dup(X)(p21);46,X,del(X)(p11);46,X,i(Xq)患者及其父母,用X染色体短臂或长臂上的限制性片段长度多态性(RFLPs)作为遗传标记,研究了异常X染色体的起源和形成机理。结果表明,dup(X)(p21)和del(X)(p11)起源于父方,而i(Xq)起源于母方。dup(X)(p21)是由X染色体姊妹染色单体不均等的互换所引起的,del(X)(p11)是由于X染色体断裂后丢失所致,i(Xq)的发生是由于卵母细胞X染色体着丝粒错分裂。  相似文献   

8.
Summary Two women with primary amenorrhoea and few other stigmata of Turner's syndrome were found to be chromosome mosaics: 45,X/46,X,idic(Y). In Case 1, the dicentric isochromosome Y was found to have a long-arm breakpoint of formation. This structure was interpreted as containing two Y short arms and centromeres separated by a region derived from the proximal Y long arm. One of the centromeres in the Case 1 —idic(Y) was suppressed in 80% of cells in blood, and in these cells it appeared as a regular Y-shaped chromosome. In Case 2 the idic(Y) was derived by a short-arm breakpoint of formation. In all the dicentrics of this case with one primary constriction (functional monocentrics) there was a single Cd band. In the 10% of dicentrics with two primary constrictions, there were two Cd bands. It is argued that the instability of sex isochromosomes is due to this functional dicentricity in some cells. These cases are compared with 42 other Y isochromosomes with various short- and long-arm breakpoints of formation. It is suggested that some of the nonheterochromatic, nonfluorescent Y chromosomes previously reported may be explained as dicentric i(Y) with proximal long-arm breakpoints of formation and one suppressed centromere.  相似文献   

9.
Summary An X isochromosome for the long arm was studied in 3 patients with Turner's syndrome using the BrdUrd-Hoechst 33258-Giemsa method and C-staining. In all 3 patients studied, the long arms of the i(Xq) were asymmetrical with respect to chronology of DNA synthesis. The most striking asynchrony of DNA replication was observed in large early replicating segments adjacent to the centromeric region. Two C bands of similar appearance were observed localized symmetrically in both arms. The data are interpreted in accordance with two possible origins of an abnormal X which is known as i(Xq).  相似文献   

10.
Among 106 females with the Turner syndrome phenotype, two displayed rare chromosomal anomalies. In one patient, in addition to X-chromosome monosomy, among cultured lymphocytes cells with two isochromosomes made by long arms of X-chromosome were detected. Their frequency was 25%, and this value was the same in cultures obtained repeatedly after 3 and 5 months, which may suggest a certain stability of this clone. The other patient had a combination of two aberrations never reported before: the combination of isochromosome Xq and the Robertsonian translocation 13; 14. By their phenotype, these two women did not change from other patients with isochromosome Xq.  相似文献   

11.
Summary Among 209 patients with Shereshevsky-Turner syndrome, 69 women with structural aberrations of X chromosome were detected: 46,X, i(Xq)-11; 45,X/46,X,i(Xq)-24; 45,X/46,X,r(X)-14; 45,X/46,X,f(X or Y)-10; 45,X/46,X,del(Xq)-4; 45,X/46,X,del(Xp)-2; 45,X/46,X,idic(X)-2; 46,X,idic(X)-1; and 46,X,t(X,2)-1. All the patients with structural abnormalities of X chromosome were short in stature, but in no group was it as low on the average as in 45,X cases. Somatic signs were noticed in all structural changes of X, but they were less frequent and less pronounced. In some patients with r(X) and i(Xq), spontaneous menstrual bleeding and breast development was found.The structurally abnormal X chromosome appears to be functionally inactive, the phenotype of patients with structural rearrangements being close to the phenotype of patients with X monosomy. At the same time, the abnormal X might have certain effects in early embryogenesis which mitigated the further development of the Shereshevsky-Turner syndrome.  相似文献   

12.
Metaphase chromosomes isolated from human lymphoblastoid cell lines containing structurally abnormal X chromosomes have been stained with the bisbenzimidazole dye Hoechst 33258 and analyzed on a FACS II flow system equipped with a 5-W all-lines argon ion laser. The chromosomal fluorescence has been highly resolved at flow rates of 1,000-3,000 chromosomes per second. With the goal of obtaining recombinant DNA libraries from parts of the human X chromosome, fluorescence populations enriched for a dicentric X (Xpter- greater than Xq24::Xq24-greater than Xpter) chromosome and an isochromosome of the long arm of the X [i(Xq)] have been identified. The dicentric X chromosome has been resolved as a discrete peak in the fluorescence flow histogram. In contrast, the fluorescence intensity of the isochromosome is indistinguishable from that of chromosomes 3 and 4. Recombinant DNA libraries from the flow-sorted chromosomes have been constructed in the lambda phage, Charon 21A, and consist of 1.6 X 10(5) and 0.7 X 10(5) plaque-forming units in the case of the dicentric X and the isochromosome, respectively. Ninety percent of the phage in both recombinant libraries contain inserts which hybridize to highly repetitive human DNA sequences. The recombinant phage library from the flow-sorted dicentric X chromosome, which could be assigned to a discrete fluorescence peak, has been further characterized and shows at least a tenfold enrichment for X chromosome-specific DNA sequences as determined by Southern blot hybridization of cloned fragments.  相似文献   

13.
46,X,i(Xq)/47,XX,+13 mosaicism   总被引:1,自引:0,他引:1  
A 10-year-old girl with short stature and other features of Turner's syndrome was found to be a mosaic consisting of 46,X,i(Xq) and 47,XX,+13 cell lines, a hitherto undescribed situation. She had none of the clinical features of trisomy 13 syndrome, with a possible exception of postaxial polydactyly of the left foot. Her PHA-stimulated blood lymphocytes and EB virus-transformed B lymphocytes both revealed the Xi(Xq)/XX,+13 mosaicism, while her skin fibroblasts showed an exclusively 46,X,i(Xq) karyotype. Studies using Q-and R-banding heteromorphisms as markers indicated that the patient started as a 13 trisomic zygote resulting from a maternal meiotic error, followed by the loss of chromosome 13 at an early mitotic division. C-banding analysis revealed two C banding blocks in the iso X chromosome, an indication that the chromosome was dicentric. BrdU-Hoechst-Giemsa analysis revealed that the iso X chromosome was late-replicating with both its arms either synchronously or asynchronously replicating. The iso X chromosome was thus designated as idic (Xq)(p11:p11). In view of the presence of the XX cell line, it was concluded that the patient started as an XX,+13 zygote, followed by two mitotic events, the loss of a chromosome 13 and the formation of the iso X chromosome, occurring either simultaneously or in succession.  相似文献   

14.
Pallister-Killian syndrome (PKS) is a rare sporadic genetic disorder usually caused by mosaicism of an extra isochromosome of 12p (i(12p)). This retrospective study analysed the prenatal ultrasound manifestations and molecular and cytogenetic results of five PKS foetuses. Samples of amniotic fluid and/or cord blood, skin biopsy and placenta were collected. Conventional karyotyping and single nucleotide polymorphism array (SNP array) were performed on all the amniotic fluid or cord blood samples. Copy number variants sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were also used for the validation for one foetus. All the five foetuses were from pregnancies with advanced parental age. Two foetuses involved structural abnormalities and one foetus had only soft markers, all of which included increased nuchal translucency. The rest two foetuses had normal ultrasounds in the second trimester, which has rarely been reported before. The karyotype revealed typical i(12p) in four cases and a small supernumerary marker chromosome consisting of 12p and 20p in the remaining one case. The proportion of cells with i(12p) ranged from 0 to 100% in cultural cells, while SNP array results suggested 2−4 copies of 12p. For one foetus, metaphase FISH showed normal results, but the interphase FISH suggested cell lines with two, three and four copies of 12p in the amniotic fluid. Advanced parental age may be an important risk factor for PKS, and there were no typical ultrasound manifestations related to PKS. A combination of karyotype analysis and molecular diagnosis is an effective method for the diagnosis of PKS.  相似文献   

15.
A possible active segment on the inactive human X chromosome   总被引:6,自引:0,他引:6  
An idic(Xp-) in which the two X chromosomes are attached short arm to short arm, and which thus has two b regions (the Q-dark segment next to the centromere on Xp) between the inactivation centers, assumed to be situated on the Q-dark region next to the centromere on Xq, showed 63.8% bipartite Barr bodies as compared with 22.2% formed by idic(Xq-). In addition, the mean distance of the two parts of the Barr bodies in the fibroblasts of a patient with idic(Xp-) is significantly greater than in the cases with one or no b region. Contrary to the other patients with abnormal X chromosomes, the buccal cells of a woman idic(Xp-) showed a number of bipartite Barr bodies. — To explain these observations we have put forward the hypothesis that the b region on the Xp always remains active and thus, when the rest of the chromosome forms a Barr body, this segment is extended, allowing the two parts of the X chromatin to get farther apart and at the same time increasing the percentage of bipartite bodies.  相似文献   

16.
The most common isochromosome found in humans involves the long arm of the X, i(Xq), and is associated with a subset of Turner syndrome cases. To study the formation and behavior of isochromosomes in a more tractable experimental system, we have developed a somatic cell hybrid model system that allows for the selection of mono- or dicentric isochromosomes involving the short arm of the X, i(Xp). Simultaneous positive and negative counterselection of a mouse/human somatic cell hybrid containing a human X chromosome, selecting for retention of the UBE1 locus in Xp but against the HPRT locus in Xq, results in a variety of abnormalities of the X chromosome involving deletions of Xq. We have generated 70 such ”Pushmi-Pullyu” hybrids derived from seven independent X chromosomes. Cytogenetic analysis of these hybrids using fluorescence in situ hybridization showed i(Xp) chromosomes in ∼19% of the hybrids. Southern blot and polymerase chain reaction analyses of the Pushmi-Pullyu hybrids revealed a distribution of breakpoints along Xq. The distance between the centromeres of the dicentric i(Xp)s generated ranged from ∼2 Mb to ∼20 Mb. To examine centromeric activity in these dicentric i(Xp)s, we used indirect immunofluorescence with antibodies to centromere protein E (CENP-E). CENP-E was detected at only one of the centromeres of a dicentric i(Xp) with ∼2–3 Mb of Xq DNA. In contrast, CENP-E was detected at both centromeres of a dicentric i(Xp) with ∼14 Mb of Xq DNA. Two other dicentric i(Xp) chromosomes were heterogeneous with respect to centromeric activity, suggesting that centromeric activity and chromosome stability of dicentric chromosomes may be more complicated than previously thought. The Pushmi-Pullyu model system presented in this study may provide a tool for examining the structure and function of mammalian centromeres. Received: 15 December 1998; in revised form: 2 March 1999 / Accepted: 5 April 1999  相似文献   

17.
Chromosome changes characteristic of fully invasive neoplasms were found in direct preparations from a noninvasive ovarian carcinoma and three carcinomas in situ of the cervix uteri, two of which showed early stromal invasion. Abnormal chromosomes present included structurally changed chromosomes 6 and an isochromosome for the long arm of chromosome 17 (in the ovarian carcinoma and one carcinoma in situ), chromosomes 1 with long arm deletions (in two carcinomas in situ) and double minute chromatin bodies (in one of two metaphases obtained from the third carcinoma in situ). A chromosome of uncertain origin with a homogeneously staining region was also present in the ovarian carcinoma.  相似文献   

18.
Summary The largest class of de novo chromosomal rearrangements in Down syndrome are rea(21q21q). Classically, these rearrangements have been termed Robertsonian translocations, implying an attachment of two different chromosome 21 homologues. Additionally, a Robertsonian translocation between two chromosomes 21 cannot be distinguished from an isochromosome composed of genetically identical arms by cytogenetic analyses. Therefore, we have used molecular techniques to differentiate between true Robertsonian translocations and isochromosomes. Samples were obtained from 12 probands, ascertained for de novo rearrangements between homologous chromosomes 21 [11 rea(21q21q) and 1 rea (21;21)(q22;q22)], their parents (n = 24) and available siblings (n = 7). The parental origins of the de novo rearrangements were assigned using molecular and cytogenetic analyses. Although not statistically significant, there was a two-fold increase in the number of paternally derived de novo rearrangements (n = 8) as compared with maternally derived rearrangements (n = 4). To distinguish between rob(21q21q) and i(21q), we used restriction fragment length polymorphisms (RFLPs) spanning the length of chromosome 21. Using all informative and partially informative RFLPs, we used the method of maximum likelihood to assign the most likely rearrangement definition (i or rob) and parental origin in each family. The maximum likelihood estimates indicated that all rearrangements tested (n = 8) were isochromosomes. C-banding revealed two centromeres in three cases indicating that a U-type exchange occurred between sister chromatids in these rearrangements. Our results suggest that the majority of de novo rea(21q21q) are isochromosomes derived from a single parental chromosome 21.  相似文献   

19.
20.
Summary The sexual development of 14 girls with non-mosaic monocentric 46,X,iXq karyotype was studied. Seven out of eight girls were found to have immature secondary sexual characteristics and amenorrhoea, a finding greatly contrasting with that in Triplo-X girls. The relative ineffectiveness of the isochromosome Xq in maintaining fertility may be due to the absence of one short arm, which probably also carries a gonadal determinant. Alternatively, the presence of two inactivation sites on one isochromosome may render the gonadal determinants inactive at an important stage in gonadal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号