首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(5):501-508
We investigated the role of Atg1 in autophagic cell death (ACD) in a Dictyostelium monolayer model. The model is especially propitious, not only because of genetic tractability and absence of apoptosis machinery, but also because induction of ACD requires two successive exogenous signals, first the combination of starvation and cAMP, second the differentiation factor DIF-1. This enables one to analyze separately first-signal-induced autophagy and subsequent second-signal-induced ACD. We used mutants of atg1, a gene that plays an essential role in the initiation of autophagy. Upon starvation/cAMP, in contrast to parental cells, atg1 mutant cells showed irreversible lesions, clearly establishing a protective role for Atg1. Upon subsequent exposure to DIF-1 or to more ACD-specific second signals, starved parental cells progressed to ACD, but starved atg1 mutant cells did not, showing that Atg1 was required for ACD. Thus, in the same cells Atg1 was required in two apparently opposite ways, upon first-signaling for cell survival and upon second-signaling for ACD. Our findings strongly suggest that Atg1, thus presumably autophagy, protects the cells from starvation-induced cell death, allowing subsequent induction of ACD by the second signal. ACD is therefore not only “with” autophagy (since

it showed signs of autophagy throughout), but is also “allowed by” autophagy. This does not exclude a role for autophagy also after second signaling. These results may account for discrepancies reported in the literature, encourage searches for second signals in different developmental models of ACD, and incite caution in autophagy-related therapeutic attempts.  相似文献   

2.
To survive extreme environmental conditions, and in response to certain developmental and pathological situations, eukaryotic organisms employ the catabolic process of autophagy. Structures targeted for destruction are enwrapped by double-membrane vesicles, then delivered into the interior of the lysosome/vacuole. Despite the identification of many specific components, the molecular mechanism that directs formation of the sequestering vesicles remains largely unknown. We analyzed the trafficking of Atg23 and the integral membrane protein Atg9 in the yeast Saccharomyces cerevisiae. These components localize both to the pre-autophagosomal structure (PAS) and other cytosolic punctate compartments. We show that Atg9 and Atg23 cycle through the PAS in a process governed by the Atg1-Atg13 signaling complex. Atg1 kinase activity is essential only for retrograde transport of Atg23, while recycling of Atg9 requires additional factors including Atg18 and Atg2. We postulate that Atg9 employs a recycling system mechanistically similar to that used at yeast early and late endosomes.  相似文献   

3.
Sirolimus (rapamycin), an inhibitor of the mechanistic target of rapamycin (MTOR), was originally proposed as an immunosuppressant to prevent rejection of solid organ transplants. There were expectations that MTOR inhibitors would replace nephrotoxic calcineurin inhibitors (CNIs). Despite its potential advantages, evidence that sirolimus causes de novo or worsening proteinuria is unequivocal. Given the well-recognized proteinuric effect of MTOR inhibitors, we were interested in understanding its role in maintaining the glomerular filtration barrier. To investigate this in vivo, we developed a mouse model with a podocyte selective deletion of the Mtor gene (Mtor pod-KO).  相似文献   

4.
《Autophagy》2013,9(4):696-698
Sirolimus (rapamycin), an inhibitor of the mechanistic target of rapamycin (MTOR), was originally proposed as an immunosuppressant to prevent rejection of solid organ transplants. There were expectations that MTOR inhibitors would replace nephrotoxic calcineurin inhibitors (CNIs). Despite its potential advantages, evidence that sirolimus causes de novo or worsening proteinuria is unequivocal. Given the well-recognized proteinuric effect of MTOR inhibitors, we were interested in understanding its role in maintaining the glomerular filtration barrier. To investigate this in vivo, we developed a mouse model with a podocyte selective deletion of the Mtor gene (Mtor pod-KO).  相似文献   

5.
The pathogenesis of sepsis is complex and, unfortunately, poorly understood. The cellular process of autophagy is believed to play a protective role in sepsis; however, the mechanisms responsible for its regulation in this setting are ill defined. In the present study, interferon regulatory factor 1 (IRF-1) was found to regulate the autophagic response in lipopolysaccharide (LPS)-stimulated macrophages. In vivo, tissue macrophages obtained from LPS-stimulated IRF-1 knockout (KO) mice demonstrated increased autophagy and decreased apoptosis compared to those isolated from IRF-1 wild-type (WT) mice. In vitro, LPS-stimulated peritoneal macrophages obtained from IRF-1 KO mice experienced increased autophagy and decreased apoptosis. IRF-1 mediates the inhibition of autophagy by modulating the activation of the mammalian target of rapamycin (mTOR). LPS induced the activation of mTOR in WT peritoneal macrophages, but not in IRF-1 KO macrophages. In contrast, overexpression of IRF-1 alone increased the activation of mTOR and consequently decreased autophagic flux. Furthermore, the inhibitory effects of IRF-1 mTOR activity were mediated by nitric oxide (NO). Therefore, we propose a novel role for IRF-1 and NO in the regulation of macrophage autophagy during LPS stimulation in which IRF-1/NO inhibits autophagy through mTOR activation.  相似文献   

6.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   

7.
Autophagy (macroautophagy) is a highly conserved eukaryotic degradation pathway in which cytosolic components and organelles are sequestered by specialized autophagic membranes and degraded through the lysosomal system. The autophagic pathway maintains basal cellular homeostasis and helps cells adapt during stress; thus, defects in autophagy can cause detrimental effects. It is therefore crucial that autophagy is properly regulated. In this study, we show that the cysteine protease Atg4B, a key enzyme in autophagy that cleaves LC3, is an interactor of the small GTPase Rab7b. Indeed, Atg4B interacts and co‐localizes with Rab7b on vesicles. Depletion of Rab7b increases autophagic flux as indicated by the increased size of autophagic structures as well as the magnitude of macroautophagic sequestration and degradation. Importantly, we demonstrate that Rab7b regulates LC3 processing by modulating Atg4B activity. Taken together, our findings reveal Rab7b as a novel negative regulator of autophagy through its interaction with Atg4B.  相似文献   

8.
The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct from apoptotic bodies and bearing markers of multivesicular bodies (MVB). Nutrient deficiency is also a potent inducer of autophagy and vesicular transport pathways can be assisted by autophagy. Nutrient deficiency induced a significant and rapid increase in autophagic features, as imaged by electron microscopy and immunoblotting analysis of LC3-II/LC3-I ratios. Increased autophagic flux was confirmed by exposing serum-starved cells to bafilomycin A 1. Induction of autophagy was followed by indices of an apoptotic response, as assessed by microscopy and poly (ADP-ribose) polymerase cleavage in absence of cell membrane permeabilization indicative of necrosis. Pan-caspase inhibition with ZVAD-FMK did not prevent the development of autophagy but negatively impacted autophagic vacuole (AV) maturation. Adopting a multidimensional proteomics approach with validation by immunoblotting, we determined that nutrient-deprived EC released AV components (LC3I, LC3-II, ATG16L1 and LAMP2) whereas pan-caspase inhibition with ZVAD-FMK blocked AV release. Similarly, nutrient deprivation in aortic murine EC isolated from CASP3/caspase 3-deficient mice induced an autophagic response in absence of apoptosis and failed to prompt LC3 release. Collectively, the present results demonstrate the release of autophagic components by nutrient-deprived apoptotic human cells in absence of cell membrane permeabilization. These results also identify caspase-3 as a novel regulator of AV release.  相似文献   

9.
《Autophagy》2013,9(6):927-937
The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct from apoptotic bodies and bearing markers of multivesicular bodies (MVB). Nutrient deficiency is also a potent inducer of autophagy and vesicular transport pathways can be assisted by autophagy. Nutrient deficiency induced a significant and rapid increase in autophagic features, as imaged by electron microscopy and immunoblotting analysis of LC3-II/LC3-I ratios. Increased autophagic flux was confirmed by exposing serum-starved cells to bafilomycin A1. Induction of autophagy was followed by indices of an apoptotic response, as assessed by microscopy and poly (ADP-ribose) polymerase cleavage in absence of cell membrane permeabilization indicative of necrosis. Pan-caspase inhibition with ZVAD-FMK did not prevent the development of autophagy but negatively impacted autophagic vacuole (AV) maturation. Adopting a multidimensional proteomics approach with validation by immunoblotting, we determined that nutrient-deprived EC released AV components (LC3I, LC3-II, ATG16L1 and LAMP2) whereas pan-caspase inhibition with ZVAD-FMK blocked AV release. Similarly, nutrient deprivation in aortic murine EC isolated from CASP3/caspase 3-deficient mice induced an autophagic response in absence of apoptosis and failed to prompt LC3 release. Collectively, the present results demonstrate the release of autophagic components by nutrient-deprived apoptotic human cells in absence of cell membrane permeabilization. These results also identify caspase-3 as a novel regulator of AV release.  相似文献   

10.
Salmonella develops into resident bacteria in epithelial cells, and the autophagic machinery (Atg) is thought to play an important role in this process. In this paper, we show that an autophagosome-like double-membrane structure surrounds the Salmonella still residing within the Salmonella-containing vacuole (SCV). This double membrane is defective in Atg9L1- and FAK family-interacting protein of 200 kDa (FIP200)-deficient cells. Atg9L1 and FIP200 are important for autophagy-specific recruitment of the phosphatidylinositol 3-kinase (PI3K) complex. However, in the absence of Atg9L1, FIP200, and the PI3K complex, LC3 and its E3-like enzyme, the Atg16L complex, are still recruited to Salmonella. We propose that the LC3 system is recruited through a mechanism that is independent of isolation membrane generation.  相似文献   

11.
Xu Liu 《Autophagy》2016,12(5):894-895
The macroautophagy (hereafter autophagy) process involves de novo formation of double-membrane autophagosomes; after sequestering cytoplasm these transient organelles fuse with the vacuole/lysosome. Genetic studies in yeasts have characterized more than 40 autophagy-related (Atg) proteins required for autophagy, and the majority of these proteins play roles in autophagosome formation. The fusion of autophagosomes with the vacuole is mediated by the Rab GTPase Ypt7, its guanine nucleotide exchange factor Mon1-Ccz1, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, these factors are not autophagosome-vacuole fusion specific. We recently showed that 2 autophagy scaffold proteins, the Atg17-Atg31-Atg29 complex and Atg11, regulate autophagosome-vacuole fusion by recruiting the vacuolar SNARE Vam7 to the phagophore assembly site (PAS), where an autophagosome forms in yeast.  相似文献   

12.
13.
Taras Y Nazarko 《Autophagy》2014,10(7):1348-1349
Like other selective autophagy pathways, the selective autophagy of peroxisomes, pexophagy, is controlled by receptor protein complexes (RPCs). The pexophagic RPC in Pichia pastoris consists of several proteins: Pex3 and Pex14 ligands in the peroxisomal membrane, Atg30 receptor, Atg11, and Atg17 scaffolds, and the phagophore protein Atg8. Recently, we identified a new component of the pexophagic RPC, Atg37, which is involved in the assembly of this complex. Atg37 is an integral peroxisomal membrane protein (PMP) that binds Pex3 and Atg30, but not Pex14 or Atg8. In the absence of Atg37, the recognition of Pex3 and recruitment of Atg17 by Atg30 are normal. However, the recruitment of Atg11 is severely affected suggesting that the role of Atg37 is to facilitate the Atg30-Atg11 interaction. Palmitoyl-CoA competes with Atg30 for the acyl-CoA binding domain of Atg37 in vitro and might regulate the dynamics of the pexophagic RPC in vivo. The human counterpart of Atg37, ACBD5, also localizes to peroxisomes and is specifically required for pexophagy. Therefore, it is tempting to speculate that ACBD5/ATG37 regulates the assembly of the pexophagic RPC in mammalian cells.  相似文献   

14.
The tomato AGC protein kinase Adi3 is known to function as a suppressor of PCD and silencing of Adi3 leads to spontaneous cell death on leaves and stems. In an effort to isolate Adi3 interacting proteins, a yeast two-hybrid screen was carried out and identified the autophagy protein Atg8h as an Adi3 interactor. This interaction occurred independent of the kinase activity status of Adi3. Silencing of genes involved in autophagy is known to eliminate the restriction of pathogen-induced PCD to a few cells and leads to run away PCD. Cosilencing Adi3 with several autophagy genes lead to the same run away cell death suggesting Adi3 may be involved in autophagic regulation of PCD.  相似文献   

15.
Autophagy is mediated by membrane-bound organelles and it is an intrinsic catabolic and recycling process of the cell, which is very important for the health of organisms. The biogenesis of autophagic membranes is still incompletely understood. In vitro studies suggest that Atg2 protein transports lipids presumably from the ER to the expanding autophagic structures. Autophagy research has focused heavily on proteins and very little is known about the lipid composition of autophagic membranes. Here we describe a method for immunopurification of autophagic structures from Drosophila melanogaster (an excellent model to study autophagy in a complete organism) for subsequent lipidomic analysis. Western blots of several organelle markers indicate the high purity of the isolated autophagic vesicles, visualized by various microscopy techniques. Mass spectrometry results show that phosphatidylethanolamine (PE) is the dominant lipid class in wild type (control) membranes. We demonstrate that in Atg2 mutants (Atg2?), phosphatidylinositol (PI), negatively charged phosphatidylserine (PS), and phosphatidic acid (PA) with longer fatty acyl chains accumulate on stalled, negatively charged phagophores. Tandem mass spectrometry analysis of lipid species composing the lipid classes reveal the enrichment of unsaturated PE and phosphatidylcholine (PC) in controls versus PI, PS and PA species in Atg2?. Significant differences in the lipid profiles of control and Atg2? flies suggest that the lipid composition of autophagic membranes dynamically changes during their maturation. These lipidomic results also point to the in vivo lipid transport function of the Atg2 protein, pointing to its specific role in the transport of short fatty acyl chain PE species.  相似文献   

16.
Autophagic cell death is characterized by the accumulation of vacuoles in physiological and pathological conditions. However, its molecular event is unknown. Here, we show that Atg5, which is known to function in autophagy, contributes to autophagic cell death by interacting with Fas-associated protein with death domain (FADD). Down-regulation of Atg5 expression in HeLa cells suppresses cell death and vacuole formation induced by IFN-gamma. Inversely, ectopic expression of Atg5 using adenoviral delivery induces autophagic cell death. Deletion mapping analysis indicates that procell death activity resides in the middle and C-terminal region of Atg5. Cells harboring the accumulated vacuoles triggered by IFN-gamma or Atg5 expression become dead, and vacuole formation precedes cell death. 3-Methyladenine or expression of Atg5(K130R) mutant blocks both cell death and vacuole formation triggered by IFN-gamma, whereas benzyloxycarbonyl-VAD-fluoromethyl ketone (Z-VAD-fmk) inhibits only cell death but not vacuole formation. Atg5 interacts with FADD via death domain in vitro and in vivo, and the Atg5-mediated cell death, but not vacuole formation, is blocked in FADD-deficient cells. These results suggest that Atg5 plays a crucial role in IFN-gamma-induced autophagic cell death by interacting with FADD.  相似文献   

17.
18.
《Autophagy》2013,9(2):249-251
The notion that phosphorylation constitutes a major mechanism to induce autophagy was established 15 years ago when a conserved Atg1/ULK kinase family was identified as an essential component of the autophagy machinery. The key observation was that starved atg1Δ cells lack autophagosomes in the cytosol and fail to accumulate autophagic bodies in the vacuole. Although many studies have revealed important details of Atg1 activation and function, a cohesive model for how Atg1 regulates the autophagic machinery is lacking. Our recent findings identified conserved steps of temporal and spatial regulation of Atg1/ULK1 kinase at both the PAS and autophagosomal membranes, suggesting that Atg1 not only promotes autophagy induction, but may also facilitate late stages of autophagosome biogenesis.  相似文献   

19.
Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12–Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.  相似文献   

20.
Autophagosome formation is a dynamic process that is strictly controlled by autophagy‐related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14‐ and phosphatidylinositol 3‐kinase‐independent manner. Atg16L1 deletion mutants, which lack the FIP200‐interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号