首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Levoglucosan is a major product of biomass pyrolysis. While this pyrolyzed biomass, also known as bio-oil, contains sugars that are an attractive fermentation substrate, commonly-used biocatalysts, such as Escherichia coli, lack the ability to metabolize this anhydrosugar. It has previously been shown that recombinant expression of the levoglucosan kinase enzyme enables use of levoglucosan as carbon and energy source. Here, ethanologenic E. coli KO11 was engineered for levoglucosan utilization by recombinant expression of levoglucosan kinase from Lipomyces starkeyi. Our engineering strategy uses a codon-optimized gene that has been chromosomally integrated within the pyruvate to ethanol (PET) operon and does not require additional antibiotics or inducers. Not only does this engineered strain use levoglucosan as sole carbon source, but it also ferments levoglucosan to ethanol. This work demonstrates that existing biocatalysts can be easily modified for levoglucosan utilization.  相似文献   

2.
Lignocellulosic biomass is recognized as potential sustainable source for production of power, biofuels and variety of commodity chemicals which would potentially add economic value to biomass. Recalcitrance nature of biomass is largely responsible for the high cost of its conversion. Therefore, it is necessary to introduce some cost effective pretreatment processes to make the biomass polysaccharides easily amenable to enzymatic attack to release mixed fermentable sugars. Advancement in systemic biology can provide new tools for the development of such biocatalysts for sustainable production of commodity chemicals from biomass. Integration of functional genomics and system biology approaches may generate efficient microbial systems with new metabolic routes for production of commodity chemicals. This paper provides an overview of the challenges that are faced by the processes converting lignocellulosic biomass to commodity chemicals. The critical factors involved in engineering new microbial biocatalysts are also discussed with more emphasis on commodity chemicals.  相似文献   

3.
Thermoacidophilic proteins for biofuel production   总被引:1,自引:0,他引:1  
Growing concerns about global climate change and energy dependence have led to an increased effort to reduce carbon emissions. A considerable reduction could be achieved by using biofuels from lignocellulosic biomass instead of fossil fuels. One major bottleneck of biofuel production from lignocellulose is the availability of efficient and inexpensive biocatalysts (i.e. alcohol dehydrogenases, cellulases and esterases) that are active and stable at high temperatures and low pH values. Although heterologous gene expression is used effectively to obtain recombinant proteins derived from mesophiles, the production of thermoacidophilic proteins is often unsuccessful. Some of the reasons for this failure and potential solutions for an increased production of novel extremophilic biocatalysts are discussed here.  相似文献   

4.
Utilization of solvent tolerant bacteria as biocatalysts has been suggested to enable or improve bioprocesses for the production of toxic compounds. Here, we studied the relevance of solvent (product) tolerance and inhibition, carbon metabolism, and the stability of biocatalytic activity in such a bioprocess. Styrene degrading Pseudomonas sp. strain VLB120 is shown to be solvent tolerant and was engineered to produce enantiopure (S)-styrene oxide from styrene. Whereas glucose as sole source for carbon and energy allowed efficient styrene epoxidation at rates up to 97 micromol/min/(g cell dry weight), citrate was found to repress epoxidation by the engineered Pseudomonas sp. strain VLB120DeltaC emphasizing that carbon source selection and control is critical. In comparison to recombinant Escherichia coli, the VLB120DeltaC-strain tolerated higher toxic product levels but showed less stable activities during fed-batch cultivation in a two-liquid phase system. Epoxidation activities of the VLB120DeltaC-strain decreased at product concentrations above 130 mM in the organic phase. During continuous two-liquid phase cultivations at organic-phase product concentrations of up to 85 mM, the VLB120DeltaC-strain showed stable activities and, as compared to recombinant E. coli, a more efficient glucose metabolism resulting in a 22% higher volumetric productivity. Kinetic analyses indicated that activities were limited by the styrene concentration and not by other factors such as NADH availability or catabolite repression. In conclusion, the stability of activity of the solvent tolerant VLB120DeltaC-strain can be considered critical at elevated toxic product levels, whereas the efficient carbon and energy metabolism of this Pseudomonas strain augurs well for productive continuous processing.  相似文献   

5.
Azotobacter vinelandii was cultured in chemically defined, nitrogen-free media supplemented with either 4-hydroxyphenylacetic, 4-hydroxybenzoic or protocatechuic acids at different concentrations. Under these conditions, biomass, exopolysaccharide production and consumption of the carbon sources were investigated. Results obtained throughout this study showed that 4-hydroxyphenylacetic acid yielded the highest growth levels measured as biomass, and exopolysaccharide production, independently of the concentration of the carbon source tested. 4-Hydroxybenzoic acid also supported appreciable growth and exopolysaccharide recovery by A. vinelandii. Protocatechuic acid, however, only allowed a very small production of biomass and exopolysaccharide by the strain investigated. Under given conditions, more than 26% of the carbon source supplied was converted to exopolysaccharide in cultures of A. vinelandii .  相似文献   

6.
The bioconversion of toluene into 3-methylcatechol was studied as a model system for the production of valuable 3-substituted catechols in general. For this purpose, an improved microbial system for the production of 3-methylcatechol was obtained. Pseudomonas putida strains containing the todC1C2BAD genes involved in the conversion of toluene into 3-methylcatechol were used as hosts for introducing extra copies of these genes by means of a novel integrative expression system. A construct was made containing an expression cassette with the todC1C2BAD genes cloned under the control of the inducible regulatory control region for naphthalene and phenanthrene degradation, nagR. Introducing this construct into wild-type P. putida F1, which degrades toluene via 3-methylcatechol, or into mutant P. putida F107, which accumulates 3-methylcatechol, yielded biocatalysts carrying multiple copies of the expression cassette. As a result, up to 14 mM (1.74 g l(-1)) of 3-methylcatechol was accumulated and the specific production rate reached a level of 105 micromol min(-1) g(-1) cell dry weight, which is four times higher than other catechol production systems. It was shown that these properties were kept stable in the biocatalysts without the need for antibiotics in the production process. This is an important step for obtaining designer biocatalysts.  相似文献   

7.
Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein.  相似文献   

8.
AIMS: To establish multicomponent phenol hydroxylases (mPHs) as novel biocatalysts for producing dyestuffs and hydroxyindoles such as 7-hydroxyindole (7-HI) from indole and its derivatives. METHODS AND RESULTS: We have isolated Pseudomonas sp. KL33, which possesses a phenol degradation pathway similar to that found in Pseudomonas sp. CF600. Pseudomonas sp. KL28 is a strain that can grow on n-alkylphenols as a carbon and energy source. Escherichia coli strains expressing mPH from strain KL28 (mPH(KL28)) and strain KL33 (mPH(KL33)) catalysed the formation of indigo and 7-HI, respectively, from indole. In addition, both mPHs catalysed the production of dyestuffs and hydroxyindoles from indole derivatives. The mPH(KL28) has proved to be one of the most versatile biocatalysts that can accommodate a wide range of indole derivatives for catalysing the formation of dyestuffs. CONCLUSIONS: The present work provides a new approach in producing various dyestuffs and hydroxyindoles from indole and its derivatives by mPHs. SIGNIFICANCE AND IMPACT OF THE STUDY: These results indicate that mPHs may serve as potential agents for organic syntheses as well as bioremediation.  相似文献   

9.
Industrial microorganisms have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. Rational strain development by metabolic engineering is crucial to successful processes, and is based on efficient genetic tools and detailed knowledge of metabolic pathways and their regulation. This review summarizes recent advances in metabolic engineering of the industrial model bacteria Escherichia coli and Corynebacterium glutamicum that led to efficient recombinant biocatalysts for the production of acetate, pyruvate, ethanol, d- and l-lactate, succinate, l-lysine and l-serine.  相似文献   

10.
许多革兰氏阴性菌通过产生N-酰基-高丝氨酸内酯(AHLs)类信号分子来调控某些性状的表达,即群体感应(quorum sensing)。假单胞菌是一种导致食品腐败的重要腐败细菌,也产生AHLs。本文研究了不同温度及碳源对食源假单胞菌AHLs产生的影响。结果表明,该假单胞菌在25℃条件下,产生两种AHL信号分子,而在4℃条件下,所产生的短链AHL分子消失,主要产生长链AHL分子。而且在不同碳源(葡萄糖,果糖,木糖,麦芽糖等)的培养基中生长,所产生的AHLs分子种类也不同。同时发现当pH>7.5时,AHLs的稳定性下降。由此得出,在不同的环境条件(碳源及温度)下假单胞菌所产生的AHLs种类不同。为进一步研究群体感应现象在食品腐败中的作用以及开发基于干扰腐败菌群体感应的新型食品防腐技术提供研究基础。  相似文献   

11.
12.
13.
The feasibility of the simultaneous production of polyhydroxyalkanoates (PHAs) and rhamnolipids, as a novel approach to reduce their production costs, was demonstrated by the cultivation of Pseudomonas aeruginosa IFO3924. Fairly large amounts of PHAs and rhamnolipids were obtained from the bacterial cells and the culture supernatant, respectively. Decanoate was a more suitable carbon source than ethanol and glucose for the simultaneous production, although glucose was suitable for cell growth without an induction period under pH control. The kind of carbon source affected PHA monomer composition markedly and PHA molecular weight slightly. Monorhamnolipids and dirhamnolipids were included in the rhamnolipids extracted from the culture supernatant using decanoate, glucose, or ethanol as the carbon source. Both PHAs and rhamnolipids were synthesized after the growth phase. PHA content in the cell reached a maximum when the carbon source was exhausted. After exhaustion of the carbon source, PHA content decreased rapidly, but rhamnolipid synthesis, which followed PHA synthesis, continued. This resulted in a time lag for the attainment of maximum levels of PHAs and rhamnolipids. The reusability of the cells used in rhamnolipid production was evaluated in the repeated batch culture of P. aeruginosa IFO3924 for the simultaneous production of PHAs and rhamnolipids. High concentrations of rhamnolipids in the culture supernatant were attained at the end of both the first and second batch cultures. High PHA content was achieved in the resting cells that were finally harvested after the second batch. Simultaneous production of PHAs and rhamnolipids will enhance the availability of valuable biocatalysts of bacterial cells, and dispel the common belief that the production cost of PHAs accumulated intracellularly is almost impossible to become lower than that of cells themselves.  相似文献   

14.
A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Agriculture, particularly pasture, is the second largest source of greenhouse gas emissions from tropical regions. Silvopastoral systems may increase carbon pools in pastures while maintaining productivity. Adding trees to pasture provides carbon sinks in woody biomass, and may improve degraded soils and increase the stability of soil carbon pools. In this study we quantified the biomass carbon stored in spontaneous silvopastoral systems in southeastern Ecuador. We compared the stem density, basal area, aboveground biomass, and organic carbon in the top 20 cm of soil in 100 pastures, ranging from 3 to 250 hectares, in four different communities. Aboveground live woody biomass, calculated using allometric equations and two different wood densities, varied from 10.99 to 66.1 Mg per hectare. Soil organic carbon pools ranged from 85.0 to 97.6 Mg per hectare. Stem density, basal area, and aboveground live biomass all positively correlated with pasture age. We found no relationship between pasture age or stem density and soil organic carbon pools. We measured live woody biomass carbon pools of 34–1070 Mg of carbon per farm in these silvopastoral systems. We found no effects on productivity of the herbaceous layer, suggesting that having a low density of trees in pastures could substantially increase the number of trees and the associated carbon sequestration without affecting cattle production.  相似文献   

17.
One of the options enabling more economic production of polyhydroxyalkanoates compared to pure cultures is the application of mixed cultures. The use of a microbial community in a sequencing batch reactor has a few advantages: a simple process control, no necessity for sterile processing, and possibilities of using cheap substrates as a source of carbon. Nevertheless, while cultivation methods to achieve high PHAs biomass concentration and high productivity in wild and recombinant strains are defined, knowledge about the cultivation strategy for PHAs production by mixed culture and species composition of bacterial communities is still very limited. The main object of this study was to characterize on the molecular level the composition and activity of PHAs producing microorganism in activated sludge cultivated under oxygen limitation conditions. PHAs producers were detected using a PCR technique and the created PHA synthase gene library was analyzed by DNA sequencing. The obtained results indicate that PHAs-producers belonged to Pseudomonas sp., and possessed genes coding for mcl-PHA synthase. The kinetics of mcl-PHA synthase expression was relatively estimated using real-time PCR technology at several timepoints. Performed quantitative and qualitative analysis of total bacterial activity showed that there were differences in total activity during the process but differential expression of various groups of microorganisms examined by using DGGE was not observed.  相似文献   

18.
Optimizing nutritional requirements for mass production of microbial inoculants in shortened time has relevance for their economical field application. Therefore, the present study aimed at selecting suitable growth medium, optimizing its components, and up-scaling inoculum production for plant growth-promoting Pseudomonas trivialis BIHB 745. Of the different media tested, the culture exhibited maximal viable colony count in trypticase soya broth with 17.6 % increased biomass on optimizing levels of carbon source, nitrogen source, and NaCl using response surface methodology. A twofold higher biomass with 9 h shorter incubation period was obtained in optimized medium in a bioreactor in comparison to shake flasks.  相似文献   

19.
Summary A system for the continuous cultivation of plant cells has been developed, based on a commercially available 3–1 turbine-stirred fermentor. A special device was constructed to provide for homogeneous effluent from the culture at low dilution rates. Two steady states with Catharanthus roseus cells growing under glucose limitation are described with respect to biomass yield on the carbon and energy source glucose, specific oxygen consumption, specific carbon dioxide production and (by)product formation. From a carbon balance for each steady state it is shown that the flow of carbon to the culture (as glucose) practically equalled the flow of carbon from the culture (as biomass, carbon dioxide and (by)product). Biomass yields on glucose were 0.31 g/g and 0.35 g/g at dilution rates of 0.0060 l/h and 0.0081 l/h respectively. The striking difference between the obtained yield coefficients and biomass yield commonly found for batch-cultured plant cells is discussed.  相似文献   

20.
产海因酶的菌种筛选和产酶条件的研究   总被引:1,自引:0,他引:1  
利用5-苄海因作为唯一氮源法筛选高产海因酶的菌种,从本实验室保存的221株菌种中筛选出12株具有不对称水解5-苄海因生成N-氨甲酰基-苯丙氨酸的菌株,其中假单胞菌(Pseudomonassp.)X4-49具有较高的产酶活力,对此菌的产酶条件的研究表明,产酶的最佳碳源为甘油,最佳氮源为蛋白胨,最佳诱导物为苄海因,尿嘧啶,苄海因作为诱导物的有效浓度为0.2%,产酶的最适培养基的初始pH为7.0。培养条件为33℃,13h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号