首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early iron deficiency stress response in leaves of sugar beet.   总被引:6,自引:0,他引:6       下载免费PDF全文
T L Winder  J N Nishio 《Plant physiology》1995,108(4):1487-1494
Iron nutrient deficiency was investigated in leaves of hydroponically grown sugar beets (Beta vulgaris) to determine how ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression is affected when thylakoid components of photosynthesis are diminished. Rubisco polypeptide content was reduced by 60% in severely iron-stressed leaves, and the reduction was directly correlated to chlorophyll content. The concentration of Rubisco protein in iron-stressed leaves was found to be regulated by availability of mRNAs, and CO2 fixation by Rubisco was reduced from 45 mumol CO2 m-2 s-1 in extracts from iron-sufficient leaves to 20 mumol CO2 m-2 s-1 in extracts from severely stressed leaves. The rate of CO2 fixation was directly correlated to leaf chlorophyll content. Rubisco in iron-sufficient control leaves was 59% activated, whereas in severely stressed leaves grown under the same light, Rubisco was 43% activated. RNA synthesis was reduced by about 50% in iron-deficient leaves, but 16S and 25S rRNA and ctDNA were essentially unaffected by iron stress.  相似文献   

2.
The mechanism responsible for the inhibition of net carbon exchange (NCE) which was reported previously (DR Geiger et al. 1986 Plant Physiol 82: 468-472) was investigated by applying glyphosate [N-(phosphonomethyl)glycine] to exporting leaves of sugar beet (Beta vulgaris L.). Leaf internal CO2 concentration (Ci) remained constant despite decreases in stomatal conductance and NCE following glyphosate treatment, indicating that the cause of the inhibition was a slowing of carbon assimilation rather than decreased conductance of CO2. Throughout a range of CO2 concentrations, NCE rate at a given Ci declined gradually, with the time-series of response curves remaining parallel. Gas exchange measurements revealed that disruption of chloroplast carbon metabolism was an early and important factor in mediating these glyphosate effects, perhaps by slowing the rate of ribulose bisphosphate regeneration. An increase in the CO2 compensation point accompanied the decrease in NCE and this increase was hastened by stepwise lowering of the ambient CO2 concentration. Eventually the CO2 compensation point approached the CO2 level of air and the difference between internal and external CO2 concentrations decreased. In control and in glyphosate-treated plants, both carbon assimilation and photorespiration at atmospheric CO2 level were inhibited to a similar extent of air level of O2. Maintaining leaves in low O2 concentration did not prevent the decline in NCE rate.  相似文献   

3.
Leaves of Fe deficient sugar beets precultured in complete nutrient solution with Fe(III)EDTA remained green during the first 6 days of –Fe treatment when grown in a small nutrient solution volume (0.5 L/plant). After 3 days of –Fe treatment, roots placed in agar showed enhanced H+ release and ferric reduction at the tips of young laterals where short root hairs and transfer cells had developed. However, the H+ release was too weak to cause a pH decrease of the bulk nutrient solution. Nevertheless, the Fe stress response reactions probably lead to mobilization of Fe from the apoplasmic pool so that chlorosis development was prevented. Slight chlorosis symptoms appeared only after 4 more days of Fe deficiency and the pH of the bulk nutrient solution decreased to pH 4.5 simultaneously with renewed transfer cell formation and subsequent rapid regreening. In the 10 times higher volume of 5 L-Fe solution/plant, laterals with root hairs and transfer cells also showed localized acidification of the agar system. However, the protons released were so diluted that no pH decrease of the bulk solution was measurable. Instead, the leaves showed continuously increasing chlorosis with degenerated chloroplast ultrastructure. It is concluded that root hairs and transfer cells are not only formed under severe chlorosis but, instead, they seem to be an integral part of the adaptive response to latent Fe deficiency.  相似文献   

4.
The responses of two sugar beet genotypes, 24367 (putative droughttolerant) and N6 (putative drought intolerant), to drought and nutrientdeficiency stress were investigated in an attempt to identify reliable andsensitive indicators of stress tolerance. In glasshouse-grown plants of bothgenotypes, relative water content (RWC) of the leaves decreased and leaftemperature increased in response to drought stress. Genotype differences inresponse to drought included leaf RWC, glycine betaine accumulation, alterationof shoot/root ratio and production of fibrous roots. Thus, in comparison to N6,genotype 24367 lost less water from leaves, produced more fibrous roots,produced more glycine betaine in shoots and tap roots and had a much reducedshoot/root ratio in response to withholding water for up to 215 h.The hydraulic conductance and sap flow of sugar beet seedlings grown innutrientculture decreased when subjected to nitrogen deficiency stress. Under nitrogensufficient conditions sap flow was greater in 24367 than in N6. The resultsindicate that genotype 24367 is more tolerant to stresses induced by water andnitrogen deficiency and that increased fibrous root development may be a majorfactor in increasing sap flow via a concomitant enhancement of aquaporinactivity.  相似文献   

5.
The effects of iron deficiency on the composition of the xylem sap and leaf apoplastic fluid have been characterized in sugar beet (Beta vulgaris Monohil hybrid). pH was estimated from direct measurements in apoplastic fluid and xylem sap obtained by centrifugation and by fluorescence of leaves incubated with 5-carboxyfluorescein and fluorescein isothiocyanate-dextran. Iron deficiency caused a slight decrease in the pH of the leaf apoplast (from 6.3 down to 5.9) and xylem sap (from 6.0 down to 5.7) of sugar beet. Major organic acids found in leaf apoplastic fluid and xylem sap were malate and citrate. Total organic acid concentration in control plants was 4.3 mM in apoplastic fluid and 9.4 mM in xylem sap and increased to 12.2 and 50.4 mM, respectively, in iron-deficient plants. Inorganic cation and anion concentrations also changed with iron deficiency both in apoplastic fluid and xylem sap. Iron decreased with iron deficiency from 5.5 to 2.5 microM in apoplastic fluid and xylem sap. Major predicted iron species in both compartments were [FeCitOH](-1) in the controls and [FeCit(2)](-3) in the iron-deficient plants. Data suggest the existence of an influx of organic acids from the roots to the leaves via xylem, probably associated to an anaplerotic carbon dioxide fixation by roots.  相似文献   

6.
Boru G  Vantoai T  Alves J  Hua D  Knee M 《Annals of botany》2003,91(4):447-453
Root flooding is damaging to the growth of crop plants such as soybean (Glycine max L.). Field flooding for 3 d often results in leaf chlorosis, defoliation, cessation of growth and plant death. These effects have been widely attributed solely to a lack of oxygen in the root-zone. However, an additional damaging factor may be CO(2), which attains levels of 30 % (v/v) of total dissolved gases. Accordingly, the effects of root-zone CO(2) on oxygen-deficient soybean plants were investigated in hydroponic culture. Soybean plants are shown to be very tolerant of excess water and anaerobiosis. No oxygen (100 % N(2) gas) and low oxygen (non-aerated) treatments for 14 d had no effect on soybean survival or leaf greenness, but plants became severely chlorotic and stunted when the roots were exposed to no oxygen together with CO(2) concentrations similar to those in flooded fields (equilibrium concentrations of 30 %). When root-zone CO(2) was increased to 50 %, a quarter of soybean plants died. Those plants that survived showed severe symptoms of chlorosis, necrosis and root death. In contrast, rice (Oryza sativa L.) plants were not affected by the combination of no oxygen and elevated root-zone CO(2.) A concentration of 50 % CO(2) did not affect rice plant survival or leaf colour. These results suggest that the high susceptibility of soybean to soil flooding, compared with that of rice, is an outcome of its greater sensitivity to CO(2).  相似文献   

7.
Summary The manganese content of sugar beet grown in pots of organic soils taken from fields where crops regularly show symptoms of manganese deficiency, and the effects on it of foliar sprays of manganous sulphate and of manganous oxide or manganese silicate frit applied to the soil, of changing the soil pH, air-drying the soil, and growing the plants either in the glasshouse or outside were determined. All the manganese treatments increased the concentration of manganese in the plants and decreased deficiency symptoms, but increased the dry matter yield only slightly. Increasing the pH by liming greatly increased symptoms and decreased the manganese concentration in the dry matter; air-drying the soil before cropping had the opposite effect. Plants grown in pots of the same soil in the glasshouse or outdoors showed similar symptoms and had similar manganese content.The concentration of manganese in the leaves was related to the percentage of plants with deficiency symptoms and to the concentration of active soil manganese. Leaves usually had symptoms when the concentration of manganese in the dried leaves was less than 30 ppm, and always had severe symptoms when they contained less than 15 ppm Mn. The soil analyses suggest that sugar beet grown in organic soil with pH greater than 7.0 and containing less than 40 ppm active soil manganese is likely to show deficiency symptoms.  相似文献   

8.
Zaharieva TB  Abadía J 《Protoplasma》2003,221(3-4):269-275
Summary.  The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet (Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants. Received November 19, 2001; accepted September 30, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, CSIC, Apartado 202, 50080 Zaragoza, Spain.  相似文献   

9.
The presence of beet yellows virus (BYV) particles was electron microscopically proved in the roots of sugar beet. Specimens for the electron microscopical examination of root sap were prepared by differential centrifugation. It was proved that, contrary to expectations, examinations in spring showed most virus particles in the basal part of the root. At the same time it was found by experiment that the diagnostical BYV antiserum, for which the antigen was prepared from sugar beet leaves, did not react with a purificate of BYV containing virus particles.  相似文献   

10.
Pressey R 《Plant physiology》1968,43(9):1430-1434
Invertase inhibitors have been isolated and partially purified from red beets, sugar beets, and sweet potatoes. These inhibitors are thermolabile proteins with molecular weights of 18,000 to 23,000. They do not inhibit yeast and Neurospora invertases, but they are reactive with potato tuber invertase and other plant invertases with pH optima near 4.5. There are differences in reactivity of the inhibitors with some of the plant invertases, however. For most invertases, red beet and sugar beet inhibitors are most effective at pH 4.5 while sweet potato inhibitor is most effective at pH 5.  相似文献   

11.
Ammonium sulfate, ammonium carbonate or ammonia gas inhibited water uptake in sugar beet roots whenever the pH was sufficiently high to cause the production of ammonia. When ammonia was removed by aeration, inhibition of the water uptake by roots was rapidly reversed. ATP at 0.2 mm appeared to either wholly or partially prevent the ammonia-induced inhibition of water uptake by roots. ATP may be involved in maintaining the structure of water pathways through the root. In roots lacking epidermis, ammonia did not inhibit water uptake by the roots. This may indicate that the site of the inhibition lies within the root epidermis.  相似文献   

12.
Application of a 17-millimolar solution of glyphosate (GLP) to sugarbeet (Beta vulgaris L.) leaves resulted in an immediate and rapid decline in the level of ribulose bisphosphate (RuBP). Phosphoglyceric acid level began to decrease about 2 hours following the decline in RuBP level. Photosynthesis rate declined linearly with RuBP level, but only when the RuBP level had decreased to about twice the RuBP carboxylase active site concentration. This occurred about 4 hours following GLP-application. At this time starch synthesis also declined abruptly. The activation state of RuBP carboxylase did not change for 8 hours following GLP application and then decreased slightly from 70 to 50% when the RuBP level fell below the RuBP carboxylase active-site concentration. Triose-phosphate, hexose-phosphate, and adenylate energy charge did not change for 8 hours following GLP-application. These data indicate that GLP induced a depletion of carbon or phosphate or both from the photosynthetic carbon reduction cycle, reducing the rate of regeneration of RuBP, photosynthesis, and starch synthesis, while having little effect upon the rate of sucrose synthesis and transport.  相似文献   

13.
Bruising of sugar beet roots and the consequential sugar loss do not receive the attention they deserve within the sugar beet industry. Recent harvester tests have indicated that current levels of bruising damage could be decreased with existing technology. There is, however, little understanding of biological factors affecting susceptibility to bruising of sugar beet roots. This paper examines the available information on causes of bruising, the significance of some tissue characteristics, the processes of sugar loss following bruising and agronomic, physiological and biochemical considerations relevant to bruising and the sugar loss that follows. Some research needs are identified in conclusion.  相似文献   

14.
15.
Eighteen isolates from sugar beet roots associated with an unknown etiology were characterized based on observations of morphological characters, hyphal growth at 4-28 C, production of phenol oxidases and sequence analysis of internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal DNA (rDNA). The isolates did not produce asexual or sexual spores, had binucleate hyphal cells with clamp connections, grew 4-22 C with estimated optimal growth at 14.5 C and formed a dark brown pigment on potato dextrose or malt extract agar amended with 0.5% tannic acid. Color changes observed when solutions of gum guiac, guiacol and syringaldzine were applied directly to mycelium grown on these media indicated that all isolates produced phenol oxidases. Sequences of ITS and LSU regions on the rDNA gene from 15 isolates were 99.2-100% identical, and analysis of sequence data with maximum likelihood and maximum parsimony suggest that the isolates from sugar beet roots are phylogenetically related to Athelia bombacina, Granulobasidium vellereum and Cyphella digitalis. High statistical support for both loci under different criteria confirmed that Athelia bombacina was consistently the closest known relative to the sugar beet isolates. Additional taxonomic investigations are needed before species can be clarified and designated for these isolates.  相似文献   

16.
Application of glyphosate (N-[phosphonomethyl] glycine) to exporting leaves of sugar beet (Beta vulgaris, L.) during the day lowered stomatal conductance and carbon fixation. Allocation of newly fixed carbon to foliar starch accumulation was nearly completely inhibited, being decreased by the same amount as net carbon fixation. In contrast, decreasing net carbon fixation in untreated leaves by lowering CO2 concentration caused starch accumulation to decrease, but only in the same proportion as net carbon fixation. Shikimate level increased 50-fold in treated leaves but the elevated rate of carbon accumulation in shikimate was only 4% of the decrease in the rate of starch accumulation. Application of steady state labeling with 14CO2 to exporting leaves confirmed the above changes in carbon metabolism, but revealed no other major daytime differences in the 14C-content of amino acids or other compounds between treated and control leaves. Less 14C accumulated in treated leaves because of decreased fixation, not increased export. The proportion of newly fixed carbon allocated to sucrose increased, maintaining export at the level in control leaves. Returning net carbon exchange to the rate before treatment restored starch accumulation fully and prevented a decrease in export during the subsequent dark period.  相似文献   

17.
In mitochondria isolated from growing (70–85 days) and dormant (stored for 8–12 weeks) sugar beet (Beta vulgaris L.) roots, activities of superoxide dismutase (SOD) and enzymes of the ascorbate-glutathione cycle were determined. The activity of SOD, the enzyme involved in superoxide detoxification, was much higher in mitochondria of the growing root, whereas activities of ascorbate peroxidase (APO) and glutathione reductase (GR), key enzymes of the ascorbate-glutathione cycle involved in the hydrogen peroxide degradation, increased substantially in mitochondria of dormant storage roots. Catalase (CAT) activity was detected in the fraction of root mitochondria purified in the sucrose density gradient, which activity was inhibited by cyanide by 85–90% and much weaker, by aminotriazol (by 30–35%). Submitochondrial localization of APO and CAT was analyzed using proteinase K. It was established that a substrate-binding APO center is localized on the external side of the inner membrane, whereas CAT is localized in the mitochondrial matrix. A possible role of mitochondria as ROS (hydrogen peroxide) acceptors in the cells of storage parenchyma of the stored root is discussed.  相似文献   

18.
GUS activities were evaluated in eight replicates of each of eight sugar beet hairy root clones, which had been derived from a single seed. Statistical analysis by the Tukey test demonstrated that 19/28 and 16/28 inter-clone comparisons were significantly different when normalised for protein concentration and DNA content respectively. Possible causes of this variation and its implications for the genetic manipulation of plant growth and development are discussed.  相似文献   

19.
Using the enzyme-linked immunosorbent assay (ELISA) beet yellows virus (BYV) could be detected reliably in the leaves of sugar beet andTetragonia expansa Pall. and in the roots of sugar beet. Specifio γ-globulin of BYV antiserum was coupled to horse radish peroxidase by periodate oxidation. Optimum dilutions of antigen (extract from infected leaves) were1: 50 to 1: 200 for BYV detection in sugar beet andT. expansa leaves and1: 2 to 1: 5 for detection in sugar beet roots. Extracts from beet roots are not to be purified by ultracentrifugation, however, by the described method virus can be demonstrated only in 80–90% of naturally infected sugar beet roots. The method is specific, no increase of extinction values was found in healthy or beet western yellows virus infected plants. Presence of virus can be demonstrated by visual as well as photometric evaluation. Results confirmed the suitability of peroxidase application for detection of plant viruses by ELISA.  相似文献   

20.
Summary Using susceptible and resistant sugar beet lines, comparative analyses of root histology and ultrastructure were made during invasion by nematodes and the induction and formation of specific feeding structures (syncytia).The resistant line carried the resistance geneHs1pro–1.Nematodes were able to invade and induce functional syncytia in roots of resistant and susceptible lines. However, syncytia in resistant roots were smaller and less hypertrophied. The vacuolar system of syncytia in susceptible plants contained many small vacuoles. In resistant plants vacuoles were larger but less numerous. Smooth endoplasmic reticulum prevailed in syncytial protoplasts of susceptible plants, whereas almost only rough endoplasmic reticulum occurred in syncytia in resistant plants. The most conspicuous and hitherto undescribed trait of syncytia in resistant roots was the initial appearance of loose, and later compact, aggregations of the endomembrane system which composed most of the endoplasmicreticulum system of syncytia at later stages. Syncytia in resistant plants usually degraded before the nematodes reached their adult stage. The appearance of membrane aggregations and the other resistance-specific features are discussed in relation to their possible effects on syncytium function and role in nematode resistance.Abreviations DAI days after inoculation - ER endoplasmic reticulum - ISC initial syncytial cell - J2 second-stage juvenile - MA membrane aggregations - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号