首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat and barley DNA enriched for ribosomal RNA genes was isolated from actinomycin D-CsCl gradients and used to clone the ribosomal repeating units in the plasmid pAC184. All five chimeric plasmids isolated which contained wheat rDNA and eleven of the thirteen which had barley rDNA were stable and included full length ribosomal repeating units. Physical maps of all length variants cloned have been constructed using the restriction endonucleases Eco Rl, Bam Hl, Bgl II, Hind III and Sal I. Length variation in the repeat units was attributed to differences in the spacer regions. Comparison of Hae III and Hpa II digestion of cereal rDNAs and the cloned repeats suggests that most methylated cytosines in natural rDNA are in -CpG-. Incomplete methylation occurs at specific Bam Hl sites in barley DNA. Detectable quantities of ribosomal spacer sequences are not present at any genomic locations other than those of the ribosomal RNA gene repeats.  相似文献   

2.
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish, Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were determined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence IN SITU hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively. An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA, the presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements.  相似文献   

3.
Summary A detailed map of the 32 kb mitochondrial genome of Aspergillus nidulans has been obtained by locating the cleavage sites for restriction endonucleases Pst I, Bam H I, Hha I, Pvu II, Hpa II and Hae III relative to the previously determined sites for Eco R I, Hind II and Hind III. The genes for the small and large ribosomal subunit RNAs were mapped by gel transfer hybridization of in vitro labelled rRNA to restriction fragments of mitochondrial DNA and its cloned Eco R I fragment E3, and by electron microscopy of RNA/DNA hybrids.The gene for the large rRNA (2.9 kb) is interrupted by a 1.8 kb insert, and the main segment of this gene (2.4 kb) is separated from the small rRNA gene (1.4 kb) by a spacer sequence of 2.8 kb length.This rRNA gene organization is very similar to that of the two-times larger mitochondrial genome of Neurospora crassa, except that in A. nidulans the spacer and intervening sequences are considerably shorter.  相似文献   

4.
5.
Human ribosomal DNA (rDNA) probe specific for the 3' end of the 28S rRNA gene was used for detecting standard restriction fragments' length polymorphism (RFLPs) in the non-transcribed spacer. The conditions for hybridization of rDNA probe which eliminate cross hybridization of parts of 28S rRNA gene were developed. A test for detecting incompletely restricted DNA was also developed which may be used in experiments for detecting new RFLPs. It was found that a set of standard RFLPs was identical in various human tissues for one individual. Frequency of standard RFLPs in the non-transcribed spacer of human rRNA gene clusters was calculated.  相似文献   

6.
Split gene for mitochondrial 24S ribosomal RNA of Neurospora crassa.   总被引:9,自引:0,他引:9  
U Hahn  C M Lazarus  H Lünsdorf  H Küntzel 《Cell》1979,17(1):191-200
  相似文献   

7.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

8.
The number of ribosomal RNA genes in Thermus thermophilus HB8.   总被引:7,自引:1,他引:6       下载免费PDF全文
We have examined the number of rRNA genes in Thermus thermophilus HB8 by hybridization of Bam HI -, Hind III - and Pst I - digests of DNA to 3'- (3 2p) 23S, 16S and 5S rRNAs according to the Southern procedure. The restriction gels gave two radioactive bands with 23S and 5S rRNA. Furthermore, band positions were indistinguishable from one another when 23S and 5S rRNAs were used as probes to Bam HI and Hind III digests, indicating that each band contains sequences corresponding to the 3'-end of 23S and 5S rRNAs. The Pst I digest also gave two radioactive bands with 23S and 5S rRNAs as probes, where one band position was identical, but the other different. The 16S rRNA did hybridize with two fragments, using a Bam HI, as well as a Bam HI - Hind III double digest. The Hind III digest gave one band using 16S rRNA as a probe. It is concluded that the Thermus thermophilus HB8 chromosome carries at least two sets of genes for 23S, 16S and 5S rRNAs.  相似文献   

9.
The spliced leader RNA genes of Bodo saltans, Cryptobia helicis and Dimastigella trypaniformis were analyzed as molecular markers for additional taxa within the suborder Bodonina. The non-transcribed spacer regions were distinctive for each organism, and 5S rRNA genes were present in Bodo and Dimastigella but not in C. helicis. Two sequence classes of 5S rRNA were evident from analysis of the bodonid genes. The two classes of 5S rRNA genes were found in other Kinetoplastids independent of co-localization with the spliced leader RNA gene.  相似文献   

10.
The chromosomal locations of ribosomal DNA in wheat, rye and barley have been determined by in situ hybridization using high specific activity 125I-rRNA. The 18S-5.8S-26S rRNA gene repeat units in hexaploid wheat (cv. Chinese Spring) are on chromosomes 1B, 6B and 5D. In rye (cv. Imperial) the repeat units occur at a single site on chromosome 1R(E), while in barley (cv. Clipper) they are on both the chromosomes (6 and 7) which show secondary constrictions. In wheat and rye the major 5S RNA gene sites are close to the cytological secondary constrictions where the 18S-5.8S-26S repeating units are found, but in barley the site is on a chromosome not carrying the other rDNA sequences. — Restriction enzyme and R-loop analyses showed the 18S-5.8S-26S repeating units to be approximately 9.5 kb long in wheat, 9.0 kb in rye and barley to have two repeat lengths of 9.5 kb and 10 kb. Electron microscopic and restriction enzyme data suggest that the two barley forms may not be interpersed. Digestion with EcoR1 gave similar patterns in the three species, with a single site in the 26S gene. Bam H1 digestion detected heterogeneity in the spacer regions of the two different repeats in barley, while in rye and wheat heterogeneity was shown within the 26S coding sequence by an absence of an effective Bam H1 site in some repeat units. EcoR1 and Bam H1 restriction sites have been mapped in each species. — The repeat unit of the 5S RNA genes was approximately 0.5 kb in wheat and rye and heterogeneity was evident. The analysis of the 5S RNA genes emphasizes the homoeology between chromosomes 1B of wheat and 1R of rye since both have these genes in the same position relative to the secondary constriction. In barley we did not find a dominant monomer repeat unit for the 5S genes.  相似文献   

11.
12.
S Cory  J M Adams 《Cell》1977,11(4):795-805
The organization of the 18S, 28S and 5.8S rRNA genes in the mouse has been elucidated by mapping with restriction endonucleases Eco RI, Hind III and Bam HI. Ribosomal DNA fragments were detected in electrophoretically fractionated digests of total nuclear DNA by in situ hybridization with radioiodinated rRNAs or with complementary RNA synthesized directly on rRNA templates. A map of the rDNA which includes 13 restriction sites was constructed from the sizes of rDNA fragments and their labeling by different probes The map indicates that the rRNA genes lie within remarkably large units of reiterated DNA, at least 44,000 base pairs long. At least two, and possibly four, classes of repeating unit can be distinguished, the heterogeneity probably residing in the very large nontranscribed spacer region. The 5.8S rRNA gene lies in the transcribed region between the 18S and 28S genes.  相似文献   

13.
14.
Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.  相似文献   

15.
16.
17.
K Tashiro  K Shiokawa  K Yamana  Y Sakaki 《Gene》1986,44(2-3):299-306
Sequences homologous to the ribosomal DNA (rDNA) in a Xenopus anucleolate (nucleolus-less) mutant were analyzed by Southern blot analysis. The mutant was found to possess a variety of sequences homologous to non-transcribed spacer (NTS) and/or coding region of rDNA. 65 rDNA-homologous clones were isolated from a genomic DNA library of the mutant. All the clones showed only partial homology to the normal rDNA unit and their restriction maps differed from that of the normal rDNA unit. Based on the hybridization patterns, the rDNA-homologous clones were divided into four groups (I-IV). Structure of group IV, which most strongly hybridized to normal rDNA probe, was analyzed by nucleotide sequencing. The group IV sequence was found to contain a part of the rDNA, including Bam island, enhancer element, promoter region, external transcribed spacer, and a portion of 18S rRNA gene. The blotting analysis suggested that the group IV sequence is specific for a particular strain of Xenopus.  相似文献   

18.
Scilla peruviana biotypes have different chromosome numbers due to changes in the nucleolar chromosomes and polyploidy. We have examined two diploid (2n = 15 and 2n = 16) and two tetraploid biotypes (2n = 28 and 2n = 32). From the results of rRNA/DNA filter hybridizations it appears that rDNA percentages of the diploid biotypes are, approximately, 2.2-fold higher than those of the tetraploid biotypes. To examine the rRNA gene structure we have utilizedSouthern blot hybridization after DNA digestions with three restriction enzymes: Eco RI, Hind III and Bam HI. From the band analysis of both single and double digestions it has been possible to reveal the presence, in the diploid biotypes, of three gene types, heterogeneous both for length and for nucleotide sequences in the external spacer. The three rRNA genes are 12 600, 12 700, and 12 800 base pairs long and they have a different position of the Hind III sites in the external spacer. On the other hand, a single gene type of 12 600 base pairs, identical to the first type of the diploid biotypes, surprisingly exists in the tetraploid biotypes. Considerations on the rRNA gene regulation and evolution are made.  相似文献   

19.
P J Wejksnora 《Gene》1985,33(3):285-292
We have examined the ribosomal RNA (rRNA) genes of the Chinese hamster ovary (CHO) cell line. A partial EcoRI library of genomic CHO DNA was prepared using lambda Charon-4A. We isolated two recombinants containing the region transcribed as 45S pre-rRNA and 13 kb of external spacer flanking 5' and 3' to the transcribed region. These sequences show restriction site homology with the vast majority of the genomic sequences complementary to rRNA. In addition to this form of rDNA, Southern blot analysis of EcoRI-cut CHO genomic DNA reveals numerous minor fragments ranging from 2 to 19 kb which are complementary to 18S rRNA. We isolated one clone which contains the 18S rRNA gene and sequences 5' which appear to contain length heterogeneity within the non-transcribed spacer region. We have nine additional cloned EcoRI fragments in which the homology with 18S rRNA is limited to a 0.9-kb EcoRI-HindIII fragment. This EcoRI-HindIII fragment is present in each of the cloned EcoRI fragments, and is flanked on both sides by apparently nonribosomal sequences which bear little restriction site homology with each other or the major cloned rDNA repeat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号