首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary structure of the heparin-binding site of type V collagen   总被引:2,自引:0,他引:2  
The abilities of collagens, type I, II, III, IV, and V, to bind heparin were examined by heparin-affinity chromatography and binding studies with [35S]heparin. At a physiological pH and ionic strength, only type V collagen bound to heparin. Collagens type I and II showed higher affinities than types III and IV for heparin, but did not bind to a heparin column at a physiological ionic strength. The heparin binding site of type V collagen was located in a 30 kDa CNBr fragment of the alpha 1(V) chain, and the amino acid sequence of this fragment was determined. The 30 kDa fragment contained a cluster of basic amino acid residues, and enzymatic cleavage within this basic domain greatly reduced the heparin-binding activities of the resulting peptides. Thus this basic region is probably the heparin-binding site of type V collagen.  相似文献   

2.
An expression vector pTF7520-Col-V-In, which encodes a fusion protein of the cell-binding domain of fibronectin (C277) and the insulin- and heparin-binding domain of the alpha 1 chain of human type V collagen, was constructed. E. coli transfected with this plasmid synthesized a 50-kDa fusion protein. This fusion protein, C277-V, was purified from the crude extract by a single step heparin HPLC. Similar amounts of insulin bound to purified C277-V and to the alpha 1 chain of type V collagen as judged by the binding of peroxidase-conjugated insulin. Cell-adhesive activity of C277-V was lower than that of the original fibronectin fragment C274, but similar numbers of cells adhered to both protein substrates when the culture dishes were coated with 1 mM of each protein. Insulin bound to the C277-V substratum stimulated the growth of mouse mammary tumor MTD cells in serum-free culture medium.  相似文献   

3.
H Munakata  K Takagaki  M Majima  M Endo 《Glycobiology》1999,9(10):1023-1027
The interactions of glycosaminoglycans with collagens and other glycoproteins in extracellular matrix play important roles in cell adhesion and extracellular matrix assembly. In order to clarify the chemical bases for these interactions, glycosaminoglycan solutions were injected onto sensor surfaces on which collagens, fibronectin, laminin, and vitronectin were immobilized. Heparin bound to type V collagen, type IX collagen, fibronectin, laminin, and vitronectin; and chondroitin sulfate E bound to type II, type V, and type VII collagen. Heparin showed a higher affinity for type IX collagen than for type V collagen. On the other hand, chondroitin sulfate E showed the highest affinity for type V collagen. The binding of chondroitin sulfate E to type V collagen showed higher affinity than that of heparin to type V collagen. These data suggest that a novel characteristic sequence included in chondroitin sulfate E is involved in binding to type V collagen.  相似文献   

4.
Interaction of vitronectin with collagen   总被引:12,自引:0,他引:12  
Purified human plasma vitronectin was demonstrated to bind to type I collagen immobilized on plastic as measured by enzyme-linked immunosorbent assay and by binding of 125I-radiolabeled vitronectin to a collagen-coated plastic surface. Vitronectin did not bind to immobilized laminin, fibronectin, or albumin in these assays. Vitronectin showed similar interaction with all types of collagen (I, II, III, IV, V, and VI) tested. Collagen unfolded by heat treatment bound vitronectin less efficiently than native collagen. Vitronectin-coated colloidal gold particles bound to type I collagen fibrils as shown by electron microscopy. Salt concentrations higher than physiological interfered with the binding of vitronectin to collagen, suggesting an ionic interaction between the two proteins. Binding studies conducted in the presence of plasma showed that purified vitronectin added to plasma bound to immobilized collagen, whereas the endogenous plasma vitronectin bound to collagen less well. Although fibronectin did not interfere with the binding of vitronectin to native collagen, vitronectin inhibited the binding of fibronectin to collagen. These results show that vitronectin has a collagen-binding site(s) which, unlike that of fibronectin, preferentially recognizes triple-helical collagen and that the binding between vitronectin and collagen has characteristics compatible with the occurrence of such an interaction in vivo.  相似文献   

5.
A Collagen-Binding S-Layer Protein in Lactobacillus crispatus   总被引:7,自引:0,他引:7       下载免费PDF全文
Two S-layer-expressing strains, Lactobacillus crispatus JCM 5810 and Lactobacillus acidophilus JCM 1132, were assessed for adherence to proteins of the mammalian extracellular matrix. L. crispatus JCM 5810 adhered efficiently to immobilized type IV and I collagens, laminin, and, with a lower affinity, to type V collagen and fibronectin. Strain JCM 1132 did not exhibit detectable adhesiveness. Within the fibronectin molecule, JCM 5810 recognized the 120-kDa cell-binding fragment of the protein, while no bacterial adhesion to the amino-terminal 30-kDa or the gelatin-binding 40-kDa fragment was detected. JCM 5810 but not JCM 1132 also bound (sup125)I-labelled soluble type IV collagen, and this binding was efficiently inhibited by unlabelled type IV and I collagens and less efficiently by type V collagen, but not by laminin or fibronectin. L. crispatus JCM 5810 but not L. acidophilus JCM 1132 also adhered to Matrigel, a reconstituted basement membrane preparation from mouse sarcoma cells, as well as to the extracellular matrix prepared from human Intestine 407 cells. S-layers from both strains were extracted with 2 M guanidine hydrochloride, separated by electrophoresis, and transferred to nitrocellulose sheets. The S-layer protein from JCM 5810 bound (sup125)I-labelled type IV collagen, whereas no binding was seen with the S-layer protein from JCM 1132. Binding of (sup125)I-collagen IV to the JCM 5810 S-layer protein was effectively inhibited by unlabelled type I and IV collagens but not by type V collagen, laminin, or fibronectin. It was concluded that L. crispatus JCM 5810 has the capacity to adhere to human subintestinal extracellular matrix via a collagen-binding S-layer.  相似文献   

6.
We have examined the molecular interactions of avian neural crest cells with fibronectin and laminin in vitro during their initial migration from the neural tube. A 105-kDa proteolytic fragment of fibronectin encompassing the defined cell-binding domain (65 kDa) promoted migration of neural crest cells to the same extent as the intact molecule. Neural crest cell migration on both intact fibronectin and the 105-kDa fragment was reversibly inhibited by RGD-containing peptides. The 11.5-kDa fragment containing the RGDS cell attachment site was also able to support migration, whereas a 50-kDa fragment corresponding to the adjacent N-terminal portion of the defined cell-binding domain was unfavorable for neural crest cell movement. In addition to the putative "cell-binding domain," neural crest cells were able to migrate on a 31-kDa fragment corresponding to the C-terminal heparin-binding (II) region of fibronectin, and were inhibited in their migration by exogenous heparin, but not by RGDS peptides. Heparin potentiated the inhibitory effect of RGDS peptides on intact fibronectin, but not on the 105-kDa fragment. On substrates of purified laminin, the extent of avian neural crest cell migration was maximal at relatively low substrate concentrations and was reduced at higher concentrations. The efficiency of laminin as a migratory substrate was enhanced when the glycoprotein occurred complexed with nidogen. Moreover, coupling of the laminin-nidogen complex to collagen type IV or the low density heparan sulfate proteoglycan further increased cell dispersion, whereas isolated nidogen or the proteoglycan alone were unable to stimulate migration and collagen type IV was a significantly less efficient migratory substrate than laminin-nidogen. Neural crest cell migration on laminin-nidogen was not affected by RGDS nor by YIGSR-containing peptides, but was reduced by 35% after addition of heparin. The predominant motility-promoting activity of laminin was localized to the E8 domain, possessing heparin-binding activity distinct from that of the N-terminal E3 domain. Migration on the E8 fragment was reduced by greater than 70% after addition of heparin. The E1' fragment supported a minimal degree of migration that was RGD-sensitive and heparin-insensitive, whereas the primary heparin-binding E3 fragment and the cell-adhesive P1 fragment were entirely nonpermissive for cell movement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
C N Rao  N A Kefalides 《Biochemistry》1990,29(29):6768-6777
A recently described procedure of reduction and carboxymethylation followed by heparin-Sepharose chromatography [Arumugham et al. (1988) Connect. Tissue Res. 18, 135-147] was used to characterize high-affinity heparin binding fragments of the laminin "A" chain. Two laminin fragments of Mr 53K and 43K selectively bound to the heparin-Sepharose column from the chymotrypsin digest of laminin, indicating that these fragments originate from the "A" chain. Without reduction and carboxymethylation but in the presence of 2.0 M urea, the heparin-Sepharose-bound material from the chymotrypsin laminin digest contains all the attachment-promoting activity for normal mouse mammary epithelial cells. The reduced 200-kDa intact three short arm fragment, fragments of Mr 70K-160K obtained either from laminin or from the reduced 200-kDa three short arm fragment, and the 53-kDa heparin binding fragment were all inactive in promoting the adhesion of mouse mammary epithelial cells. The mammary epithelial cell adhesion and spreading properties of laminin are associated with the high-affinity heparin binding 43-kDa fragment. The mammary epithelial cells attach to the 43-kDa fragment substrate and synthesize laminin, collagen type IV, and desmoplankins I and II as are the cells attached to laminin substrate and to the cells grown on tissue culture dishes. The biologically active 43-kDa fragment is generated from laminin, but not from the three short arm fragment. These results suggest that normal mouse mammary epithelial cells interact with laminin through a single site which is present in the 43-kDa heparin binding fragment located on the long arm of the "A" chain.  相似文献   

8.
We have recently shown that the large hyaluronan-aggregating chondroitin sulfate proteoglycan from cartilage (PG-LA) is unfavorable as a substrate for neural crest cell migration in vitro and that this macromolecule inhibits cell dispersion on fibronectin substrates when included in the medium (R. Perris and S. Johansson, 1987, J. Cell Biol. 105, 2511-2521). In this study we present data on the specificity of the migration-repressing activity of PG-LA and data on the molecular mechanisms by which the proteoglycan might impair neural crest cell motility. Soluble PG-LA potently impaired cell migration on substrates of laminin/laminin-nidogen, vitronectin, and collagen types I, III, IV, and VI. When tested in solid-phase binding assays, PG-LA bound avidly to substrates of collagen types I-III and V. Conversely, minimal amounts of the proteoglycan bound to substrates of laminin-nidogen, vitronectin, collagen types IV and VI, and fibronectin or to a proteolytic fragment encompassing its cell-binding domain (105 kDa). Preincubation of these substrates with soluble PG-LA prior to plating of the cells had no effect on their locomotory behavior. These results indicate that PG-LA affects neural crest cell movement primarily through an interaction with the cell surface, rather than by association with the cell motility-promoting substrate molecules. The molecular interaction of soluble PG-LA with neural crest cells was further examined by analyzing the effects of isolated domains of the proteoglycan on cell migration on fibronectin. Addition of chondroitin sulfate chains, the core protein free of glycosaminoglycans, the isolated hyaluronan-binding region (HABr), or a proteolytic fragment corresponding to the keratan sulfate-enriched domain of the PG-LA to neural crest cells migrating on fibronectin or the 105-kDa fibronectin fragment had no significant effect on their motility. After reduction and alkylation, PG-LA was considerably less efficient in perturbing cell movement on fibronectin substrates and virtually ineffective in altering migration on the 105-kDa fragment. In the presence of hyaluronan fragments of 16-30 monosaccharides in length, or an antiserum against the HABr, the migration repressing activity of PG-LA was reduced in a dose-dependent fashion. Furthermore, the inhibitory action of PG-LA was significantly reduced by treatment of the cells with Streptomyces hyaluronidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Two different types of macrophage colony-stimulating factors (M-CSF) were found, one with an apparent molecular mass of 85 kDa and the other greater than 200 kDa. The high molecular mass M-CSF was identified as a proteoglycan carrying chondroitin sulfate glycosaminoglycan and was designated as the proteoglycan form of M-CSF (PG-M-CSF). In this study, we compared the biological activity of the 85-kDa M-CSF and PG-M-CSF and examined the binding properties of these two M-CSF to certain extracellular matrix proteins, i.e. types I-V collagen and fibronectin, using a modified enzyme-linked immunosorbent assay. PG-M-CSF was capable of supporting the formation of murine macrophage colonies, and pretreatment of PG-M-CSF with chondroitinase AC, which degrades chondroitin sulfate, did not alter its colony-stimulating activity. The specific activity of PG-M-CSF was similar to that of the 85-kDa M-CSF. The 85-kDa M-CSF had no apparent affinity for the extracellular matrix proteins examined, whereas PG-M-CSF had an appreciable binding capacity to type V collagen, but did not bind to types I, II, III, and IV collagen or to fibronectin. Pretreatment of PG-M-CSF with chondroitinase AC completely abolished the binding of the species to type V collagen. Addition of exogenous chondroitin sulfate inhibited the binding of PG-M-CSF to type V collagen in a dose-dependent manner. These data indicated that the interaction between PG-M-CSF and type V collagen was mediated by the chondroitin sulfate chain of PG-M-CSF. PG-M-CSF bound to type V collagen could stimulate the proliferation of bone marrow macrophages, indicating that the matrix protein-bound PG-M-CSF retained its biological activity. This interaction between PG-M-CSF and type V collagen implies that the role of PG-M-CSF may be distinct from that of 85-kDa M-CSF.  相似文献   

10.
Fibulin is a recently described extracellular matrix (ECM) and plasma glycoprotein (Argraves, W. S., Tran, H., Burgess, W. H., and Dickerson, K. (1990) J. Cell Biol. 111, 3155-3164). In this report, ligand affinity chromatography and solid-phase binding analyses were performed to determine which ECM protein(s) interact with fibulin. Fibulin-Sepharose bound two polypeptides of 240 and 100 kDa from the culture medium of metabolically radiolabeled fibroblasts. These two proteins were identified as fibronectin (FN) and fibulin, respectively, based on their electrophoretic behavior and reactivity with monoclonal antibodies. Consistent with the findings of affinity chromatography, fibulin bound to surfaces coated with FN (either plasma or cellular form) or fibulin but not with other ECM proteins, such as laminin, merosin, and types I and IV collagen. The binding of fibulin to solid-phase FN was estimated to have a Kd of 139 nM, whereas the Kd for self-interaction was 322 nM. Evaluation of proteolytic fragments from all regions of FN allowed a fibulin-binding site to be localized within a 23-kDa heparin-binding fragment containing type III repeats 13-14. Heparin did not compete for the interaction between fibulin and FN, suggesting that the binding sites for fibulin and heparin are distinct.  相似文献   

11.
This is the first report on a unique vitronectin molecule, yolk vitronectin, which is similar to its blood homologue in cell spreading activity but different in molecular size, bound carbohydrate, and heparin and collagen binding activity. Yolk vitronectin was purified 2,500-fold from chick egg yolk by a combination of hydroxylapatite, DEAE-cellulose, and anti-vitronectin-Sepharose column chromatographies. In SDS-polyacrylamide gel electrophoresis under reducing conditions, yolk vitronectin was separated into 54- and 45-kDa bands, which are 16 and 25 kDa smaller, respectively, than the 70-kDa major band of chick blood vitronectin. The 54-kDa band shares the same NH2-terminal sequence as chick blood vitronectin. In contrast, the NH2-terminal sequence of the 45-kDa band is somewhat homologous with the internal sequences of mammalian vitronectins beginning at the 50th amino acid from the NH2 terminus. The bound carbohydrate of the 54- and 45-kDa species of yolk vitronectin is similar to, but distinct from, that of blood vitronectin. Unlike blood vitronectin, yolk vitronectin cannot bind to either heparin or collagen.  相似文献   

12.
Affinity-purified insulin receptor was photoaffinity labeled with a cleavable radioactive insulin photoprobe. Exhaustive digestion of the labeled alpha-subunit with endoproteinase Glu-C produced a major radioactive fragment of 23 kDa as a part of the putative insulin-binding domain. This fragment could contain either residues 205-316 or 518-633 of the alpha-subunit. Rat hepatoma cells and Chinese hamster ovary cells were transfected with cDNA encoding a human insulin receptor mutant with a deletion of the cysteine-rich region spanning amino acid residues 124-319. Insulin binding by these cells was not increased in spite of high numbers of the mutant insulin receptors being expressed. A panel of monoclonal antibodies which was specific for the receptor alpha-subunit and inhibited insulin binding immunoprecipitated the photolabeled 23-kDa receptor fragment but not the receptor mutant. A synthetic peptide containing residues 243-251 was specifically bound by agarose-insulin beads. We therefore suggest that the 23-kDa fragment contains residues 205-316, and that insulin binding occurs, in part, in the cysteine-rich region of the alpha-subunit.  相似文献   

13.
We wished to determine whether hyaluronan would affect the attachment of epithelial cells to extracellular matrix proteins. Multiwell tissue culture plates were coated with human plasma fibronectin, laminin, or collagen type IV (0.01–10.0 μg/ml). Single-cell suspensions of rabbit corneal epithelial cells were placed in the wells, and after 45 minutes incubation the cells adhering to the matrix proteins were stained and counted. Cells attached to all three types of proteins. Preincubation of the matrix proteins with hyaluronan (0.1–1.0 mg/ml) significantly increased the number of cells attached to the fibronectin matrix, but it did not increase the numbers of cells attached to laminin or collagen type IV. Hyaluronidase inhibited this stimulatory effect. Glycosaminoglcyans other than hyaluronan (chondroitin sulfate, keratan sulfate, or heparan sulfate) failed to increase the numbers of attached cells. Treatment of the fibronectin matrix with monoclonal antibodies against the cell-binding domain of fibronectin (FN12–8 or FN30–8, 0.03–0.3 mg/ml, for 1 hour), before or after hyaluronan treatment, significantly decreased the numbers of attached cells. Monoclonal antibody against the fibrin- and heparin-binding domain at the N-terminal (FN9–1), however, significantly decreased the number of attached cells only when this antibody treatment preceded the hyaluronan treatment. Preincubation of the cells with hyaluronan had no effect; preincubation with GRGDSP (1 mg/ml), a synthetic peptide that blocks the cell surface receptor for fibronectin, significantly decreased cell attachment whether the fibronectin matrix was treated with hyaluronan or not. Further studies demonstrated that monoclonal antibody against the fibrin- and heparin-binding domain at the N-terminal of plasma fibronectin prevented radiolabeled hyaluronan from binding to fibronectin; likewise, the isolated N-terminal fragment, coupled with Sepharose 4B, bound to hyaluronan in columns. We conclude that hyaluronan binds to a fibrin- and heparin-binding domain at the N-terminal of plasma fibronectin and facilitates the attachment of epithelial cells. © 1994 wiley-Liss, Inc.  相似文献   

14.
We have previously shown that a recombinant 12-kDa fragment of the collagen alpha1(V) chain (Ile(824)-Pro(950)), referred to as HepV, binds to heparin and heparan sulfate (Delacoux, F., Fichard, A., Geourjon, C., Garrone, R., and Ruggiero, F. (1998) J. Biol. Chem. 273, 15069-15076). No consensus sequence was found in the alpha1(V) primary sequence, but a cluster of 7 basic amino acids (in the Arg(900)-Arg(924) region) was postulated to contain the heparin-binding site. The contribution of individual basic amino acids within this sequence was examined by site-directed mutagenesis. Further evidence for the precise localization of the heparin-binding site was provided by experiments based on the fact that heparin can protect the alpha1(V) chain heparin-binding site from trypsin digestion. The results parallel the alanine scanning mutagenesis data, i.e. heparin binding to the alpha1(V) chain involved Arg(912), Arg(918), and Arg(921) and two additional neighboring basic residues, Lys(905) and Arg(909). Our data suggest that this extended sequence functions as a heparin-binding site in both collagens V and XI, indicating that these collagens use a novel sequence motif to interact with heparin.  相似文献   

15.
Human diploid fibroblasts (TIG-3) were shown to attach and spread onto substrata coated with collagen, fibronectin, laminin and vitronectin. The cell attachment to these proteins required divalent cations. Mg2+ stimulated the cell attachment to all the proteins, while Ca2+ alone was not effective for the attachment to collagen and laminin. A mild trypsin treatment had prevented cells from attaching to the laminin, while it had no effect on the attachment to the other proteins. The fibronectin fragment, which retained cell binding activity, inhibited the cells from attaching and spreading onto fibronectin, but it did not cause any inhibition on the other proteins. The synthetic peptide GRGDSP inhibited the cells from attaching and spreading onto fibronectin and vitronectin, while it did not cause any inhibition on collagen and laminin. In attempts to isolate distinct receptors for these proteins, we were able to purify proteins very similar to the fibronectin and vitronectin receptors of human placenta. Based on the differential properties of the attachment of TIG-3 cells to these proteins and biochemical data, we indicate that human diploid fibroblasts have distinctive binding sites (receptors) for collagen, fibronectin, laminin and vitronectin.  相似文献   

16.
J Takagi  H Asai  Y Saito 《Biochemistry》1992,31(36):8530-8534
Propolypeptide of von Willebrand factor (pp-vWF) binds to type I collagen, and we have reported that a binding domain exists in a 21.5/21-kDa fragment originated from the C-terminal portion [Takagi, J., Fujisawa, T., Sekiya, F., & Saito, Y. (1991) J. Biol. Chem. 266, 5575-5579]. The collagen-binding property of the 21.5/21-kDa fragment was compared with that of the intact pp-vWF. Although pp-v WF preferentially binds to native type I collagen fibrils, the isolated fragment no longer has this specificity and binds well to collagen of other types in the native and heat-denatured states. In order to determine the critical site that mediates this collagen/gelatin binding, several peptides were synthesized based on the primary structure of the 21.5/21-kDa fragment. Among these, a 25-residue peptide strongly inhibited the binding of the 125I-labeled 21.5/21-kDa fragment to collagen. Using this inhibitory effect as an index, the binding site was defined to the sequence as follows: WREPSFCALS. Furthermore, a decapeptide of this sequence bound to collagen and gelatin, indicating that this sequence is responsible for the binding of the 21.5/21-kDa fragment to collagen/gelatin.  相似文献   

17.
Human melanoma cells express a novel integrin receptor for laminin   总被引:11,自引:0,他引:11  
This study sought to determine whether human melanoma cells express integrin-related receptors that mediate their adhesion to laminin. We found that antibodies against the integrin beta 1 chain blocked cell attachment to laminin-coated surfaces. Furthermore, immunofluorescence staining demonstrated beta 1 complexes in vinculin-positive focal adhesion plaques on the basal surface of cells attached to laminin substrates. Chromatography of detergent extracts of 125I-surface-labeled cells on laminin-Sepharose columns recovered two major laminin-binding proteins (100 and 130 kDa, reduced) that bound with high affinity to the columns and were eluted with EDTA. Both proteins were specifically immunoprecipitated from column fractions with monoclonal and polyclonal antibodies to the integrin beta 1 subunit, indicating that they form a noncovalent heterodimer complex. The alpha-like subunit is composed of a 30-kDa light chain that is joined by a disulfide bond to the 100-kDa heavy chain. This complex was not recovered from columns of fibronectin- or collagen type I- or IV-Sepharose. Laminin-binding by the alpha beta 1 complex was independent of Arg-Gly-Asp or Tyr-Ile-Gly-Ser-Arg-like sequences, but required the presence of divalent cations. The 100-kDa alpha-like subunit was electrophoretically and immunochemically distinct from the other known alpha subunits, alpha 1-alpha 6. The results indicate that human melanoma cells express a novel laminin-specific integrin beta 1 complex which may mediate the cells' interactions with this ligand.  相似文献   

18.
A neutrophil chemotactic factor has been purified from the homogenate of rat granulation tissues. The purified chemoattractant was a basic protein with heparin-binding site and gave a single band corresponding to a molecular mass of 16 kDa on SDS-PAGE under reducing conditions. The chemoattractant was treated with lysylendopeptidase and the resulting peptides were isolated by reversed-phase HPLC. Amino acid sequences of the peptides were almost identical with the sequence of N-terminal fibronectin type III domain of human collagen type XIV, suggesting that the purified chemoattractant consists mainly of N-terminal fibronectin type III domain and the adjacent heparin-binding site of rat collagen type XIV. The 16-kDa fragment of collagen type XIV dose dependently attracted rat neutrophils and transiently increased the intracellular free Ca2+ concentration of neutrophils. The results suggest that the novel chemoattractant plays a role in neutrophil recruitment in rat inflammation.  相似文献   

19.
A cell-binding peptide (Mr = 85,000) which lacks the gelatin- and heparin-binding domains, was purified from trypsin-digested fibronectin. Preincubation of rat hepatocytes in suspension with the peptide, inhibited initial attachment of the cells to immobilized fibronectin while attachment to immobilized laminin and collagen was unaffected. 125I-labeled 85-kDa peptide bound to the cells in suspension at 4 degrees C in a time-dependent, saturable, and partially reversible reaction. Scatchard analysis of the binding data indicated a single class of receptors with a Kd of 1.7 X 10(-8) M. The number of binding-sites was approximately 2.8 X 10(5)/cell. Unlabeled 85-kDa peptide inhibited the binding of 125I-labeled 85-kDa peptide 30-fold more effectively than intact fibronectin. These results provide direct evidence for the presence of a domain in the fibronectin molecule which has or may acquire a high affinity for receptors involved in adhesion of hepatocytes to immobilized fibronectin.  相似文献   

20.
Laminin- and elastin-binding proteins were isolated by ligand affinity chromatography from plasma membranes of fetal bovine auricular chondroblasts and human A2058 melanoma cells. From both cell types, a 67-kDa protein was identified which bound to either elastin or laminin affinity resins. Structural and functional similarities between the elastin and laminin-binding proteins were suggested by 1) cross-reactivity between antibodies directed against the two proteins; 2) elution of the laminin receptor from laminin columns with soluble elastin peptides; and 3) modulation of substrate binding by galactoside sugars. In addition, extraction properties indicate that both receptors are peripheral membrane proteins whose association with the cell surface is mediated by their lectin properties. Mapping of the binding site on laminin suggests that the 67-kDa chondroblast receptor interacts with a hydrophobic elastin-like sequence in domain V of the B1 chain, and chemotaxis studies indicate that cell migration to elastin peptides and laminin involves the same receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号