首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单宁酸对布氏田鼠能量代谢的影响   总被引:4,自引:4,他引:0  
为了解单宁酸对成年布氏田鼠(Lasiopodomys bandtii**)能量代谢和产热的影响,本文采用含0、3.3%和6.6%单宁酸浓度的食物饲喂布氏田鼠21 d,对其体重、基础代谢率、非颤抖性产热和能量收支等进行了测定。代谢率采用封闭式流体压力呼吸计测定;非颤抖性产热用皮下注射去甲肾上腺素诱导;能量摄人采用食物平衡法测定。结果发现:(1) 单宁酸食物对布氏田鼠的体重没有明显影响;(2)取食含6.6%单宁酸食物的动物的基础代谢率于第10 d高于对照组。20 d时,3组动物的基础代谢率没有显著差异;(3) 单宁酸食物对非颤抖性产热没有显著影响;(4) 食用含单宁酸食物的动物的摄人能和消化能于第10 d显著低于对照组,但第20 d时则差异不显著。这些结果表明:布氏田鼠的基础代谢率和能量摄入对单宁酸的反应具有时段性,短期内能量消耗增加,随着动物对食物的适应,生理功能恢复到正常水平。  相似文献   

2.
Food quality and availability play an important role in an animal's life history. The aim of this study was to examine the effect of diet quality [high-fiber diet (HF) or low-fiber diet (LF)] on energy budgets and thermogenesis in Brandt's voles (Lasiopodomys (Microtus) brandtii). Dry matter intake and gross energy intake increased and digestibility decreased in HF voles compared with LF voles, while the digestible energy intake was similar for both HF and LF voles. Nonshivering thermogenesis (NST) decreased in HF voles, while LF voles kept stable; no significant differences were detected in basal metabolic rate (BMR), BAT uncoupling protein 1 (UCP1) content and the levels of serum thyroid hormones (T3 and T4) between HF and LF voles. Although there were no differences in body fat content and serum leptin concentrations between HF and LF voles, serum leptin concentrations in HF voles were reduced to nearly half as those seen in LF voles after 4-weeks acclimation. These results support the hypothesis that Brandt's voles can compensate the poor quality diet physiologically by the means of increasing food intake and decreasing thermogenesis.  相似文献   

3.
We investigated the changes that occurred in basal and noradrenaline-induced metabolic rate, body temperature and body mass in short-tailed field voles,Microtus agrestis, during exposure to naturally increasing photoperiod and ambient temperature. These parameters were first measured in winter-acclimatized voles (n=8) and then in the same voles which had been allowed to seasonally acclimatize to photoperiod and ambient temperature (6 months later). Noradrenaline induced metabolic rate, basal metabolic rate and nonshivering thermogenesis were significantly higher in winter-acclimatized compared to summer-acclimatized voles. There was a significant positive relationship between basal metabolic rate and noradrenaline-induced metabolic rate. Body mass was significantly higher in summer-acclimatized compared to winter-acclimatized voles. There was a significant positive relationship between body mass and noradrenaline-induced metabolic rate in both winter-acclimalized and summer-acclimatized voles; however, there was no relationship between basal metabolic rate and body mass in either seasonal group of voles. Body temperature after measurements of basal metabolic rate was not significantly different in the seasonal cohorts of voles. However, body temperature was significantly higher in winter-acclimatized compared to summer-acclimatized voles after injection of noradrenaline. Previously we have found that a long photoperiod was not a sufficient stimulus to reduce thermogenic capacity in winter-acclimatized voles during cold exposure, since basal metabolic rate increased to compensate for a reduction in regulatory nonshivering thermogenesis. Here we found that a combination of increased ambient temperature and photoperiod did significantly reduce thermogenic capacity in winter-acclimatized voles. This provided evidence that the two aspects of non-shivering thermogenesis, obligatory and regulatory, are stimulated by different exogenous cues. Summer acclimatization in the shorttailed field vole is manifest as a significant decrease in both basal and noradrenaline-induced metabolic rate, combined with a significant increase in body mass.Abbreviations ANCOV A analysis of covariance - BAT brown adipose tissue - BM body mass - BMR basal metabolic rate - NST non-shivering thermogenesis - NA noradrenaline - V the maximum V recorded following mass specific injection of noradrenaline - V the maximum V recorded following mass specific injection of saline - T a ambient temperature - T b rectal body temperature - T 1c lower critical temperature - UCP uncoupling protein - V oxygen consumption  相似文献   

4.
Seasonal changes in an animal's morphology, physiology, and behavior are considered to be an adaptive strategy for survival and reproductive success. In the present study, we examined body weight and several behavioral, physiological, hormonal, and biochemical markers in seasonally acclimatized Brandt's voles (Microtus brandti) to test our hypothesis that Brandt's voles can decrease energy intake associated with decrease in body weight, body fat content, serum leptin level, and increasing thermogenesis in winter conditions. We found that the body weight of Brandt's voles was lowest in winter (December to February) and highest in spring and early summer (May to June). This seasonal variation in body weight was associated with changes in other markers examined. For example, the winter decrease in body weight was accompanied by increased energy intake and enhanced nonshivering thermogenesis (NST) as well as by decreased body fat mass and reduced levels of circulating leptin. Further, circulating levels of leptin were positively correlated with body weight and body fat mass, and negatively correlated with energy intake and uncoupling protein 1 contents. Together, these data do not support our hypothesis and suggest that leptin may be involved in this process and serve as a starvation signal in Brandt's voles.  相似文献   

5.
Environmental cues play important roles in the regulation of an animal's physiology and behavior. The purpose of the present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake and thermogenic capacity, associated with changes in serum leptin levels in Brandt's voles (Lasiopodomys brandtii). We found that Brandt's voles increased resting metabolic rate (RMR) and energy intake and kept body mass stable when exposed to the cold while showed a significant increase in body mass after rewarming. The increase in body mass after rewarming was associated with the higher energy intake compared with control. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) increased in the cold and reversed after rewarming. Serum leptin levels decreased in the cold while increased after rewarming, associated with the opposite changes in energy intake. Further, serum leptin levels were positively correlated with body mass and body fat mass. Together, these data supported our hypothesis that ambient temperature was a cue to induce changes in body mass and metabolism. Serum leptin, as a starvation signal in the cold and satiety signal in rewarming, was involved in the processes of thermogenesis and body mass regulation in Brandt's voles.  相似文献   

6.
Abstract.— As a first examination of the additive genetic variance of thermoregulatory traits in a natural population of endotherms, we studied the quantitative genetics of key physiological ecology traits in the leaf-eared mouse, Phyllotis darwini. We measured basal metabolic rate (BMR), nonshivering thermogenesis (NST), maximum metabolic rate for thermoregulation (MMR), thermal conductance (CT), body temperature (Tb), and factorial aerobic scope (FAS) in individuals acclimated to cold and warm conditions. For comparability with previous studies, we included the following morphological traits: foot length (FL), total length (TL), body mass (mb, at birth, sexual maturity, 6 months, and 8 months). Variance components were obtained from two different procedures: the expected variance component in an ANOVA Type III sum of squares and an animal model approach using restricted maximum likelihood. Results suggest the presence of additive genetic variance in FL (h2= 0.47, P = 0.045), CT of cold-acclimated animals (h2= 0.66, P = 0.041), and night body temperature, measured in cold-acclimated animals (h2= 0.68, P = 0.080). Heritabilities of mb were near zero at all ages, but maternal effects and common environment effects were high and significant. We found no evidence of additive genetic variance in BMR, NST, MMR, or FAS (i.e., estimates were not significantly different from zero for all tests). Our results are in general agreement with previous studies of mammals that reported low heritability for: (1) BMR and MMR; (2) daytime body temperature; and (3) body mass for wild, but not laboratory or domestic, populations.  相似文献   

7.
光周期和高脂食物对布氏田鼠能量代谢和产热的影响   总被引:7,自引:0,他引:7  
为了研究光周期和高脂食物对小型哺乳动物能量代谢和产热的影响,将成年雌性布氏田鼠(Lasiopodomys brandtii)分别驯化于长光照低脂、高脂食物和短光照低脂、高脂食物,7周后测定动物的体重、能量摄入、产热、血清瘦素浓度以及褐色脂肪组织解偶联蛋白1(BAT-UCP1)含量等参数.结果发现:1)短光照抑制体重增长、降低体脂重量和血清瘦素水平,增加非颤抖性产热(NST)和UCP1含量;2)高脂食物使摄入能减少和消化率提高,但未显著影响体重、基础代谢率、NST、UCP1含量和血清瘦素;3)血清瘦素与摄入能不相关,但与体脂含量正相关.结果暗示:短光照下瘦素作用敏感性增加和产热能力增强,可能介导了抵抗高脂食物诱导的肥胖.在野外条件下草食性的布氏田鼠能通过能量代谢和产热的适应性调节避免体重的过度增长,有利于降低捕食风险,增强生存能力.同时布氏田鼠是研究食物诱导肥胖机理的一个好模型  相似文献   

8.
内蒙古草原布氏田鼠代谢率与身体器官的关系   总被引:7,自引:2,他引:7  
宋志刚  王德华 《兽类学报》2003,23(3):230-234
动物代谢率存在差异的原因及其意义是进化生理学的一个核心问题。为了解代谢率的影响因素和功能意义, 我们测定了不同驯化条件下布氏田鼠(Microtus brandti) 的基础代谢率(basal metabolic rate , BMR) 、日能量消耗(daily energy expenditure , DEE) 和冷诱导的最大代谢率(maximum metabolic rate , MMR) , 分析了动物体内11 种器官、组织的重量与代谢率的关系。结果显示, 排除温度、光照、食物质量和体重的影响后, BMR 与心脏、肝脏、肾脏、胃和盲肠相关; DEE与心脏、肾脏、胃和盲肠相关; MMR 与脑重显著负相关。这表明: 在布氏田鼠体内存在着代谢活性器官, 主要包括心脏、肝脏、肾脏、胃和盲肠, 这些器官对BMR 有较大的贡献。动物的能量周转水平与体内“代谢机器” (metabolic machinery) 的大小相关连, 主要受到心脏、肾脏、胃和盲肠的影响。最大代谢率受脑重的影响。BMR 与MMR 的相关性不显著, 而BMR 与DEE 的相关性显著, 说明较高的BMR 有助于维持较高的DEE , 但不能维持较高的MMR。  相似文献   

9.
Basal metabolic rate (BMR) is a fundamental energetic trait and has been measured in hundreds of birds and mammals. Nevertheless, little is known about the consistency of the population-average BMR or its repeatability at the level of individual variation. Here, we report that average mass-independent BMR did not differ between two generations of bank voles or between two trials separated by one month. Individual differences in BMR were highly repeatable across the one month interval: the coefficient of intraclass correlation was 0.70 for absolute log-transformed values and 0.56 for mass-independent values. Thus, BMR can be a meaningful measure of an individual physiological characteristic and can be used to test hypotheses concerning relationships between BMR and other traits. On the other hand, mass-independent BMR did not differ significantly across families, and the coefficient of intraclass correlation for full sibs did not differ from zero, which suggests that heritability of BMR in voles is not high.  相似文献   

10.
According to the aerobic capacity model, endothermy in birds and mammals evolved as a correlated response to selection for an ability of sustained locomotor activity, rather than in a response to direct selection for thermoregulatory capabilities. A key assumption of the model is that aerobic capacity is functionally linked to basal metabolic rate (BMR). The assumption has been tested in several studies at the level of phenotypic variation among individuals or species, but none has provided a clear answer whether the traits are genetically correlated. Here we present results of a genetic analysis based on measurements of the basal and the maximum swim- and cold-induced oxygen consumption in about 1000 bank voles from six generations of a laboratory colony, reared from animals captured in the field. Narrow sense heritability (h2) was about 0.5 for body mass, about 0.4 for mass-independent basal and maximum metabolic rates, and about 0.3 for factorial aerobic scopes. Dominance genetic and common environmental (= maternal) effects were not significant. Additive genetic correlation between BMR and the swim-induced aerobic capacity was high and positive, whereas correlation resulting from specific-environmental effects was negative. However, BMR was not genetically correlated with the cold-induced aerobic capacity. The results are consistent with the aerobic capacity model of the evolution of endothermy in birds and mammals.  相似文献   

11.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. In this study, we performed a factorial experiment (temperature x photoperiod) in which Brandt's voles and Mongolian gerbils were acclimated to different photoperiods (long photoperiod, 16L : 8D; short photoperiod, 8L : 16D) and temperatures (warm, 23 degrees C; cold, 5 degrees C) to test the hypothesis that photoperiod, temperature, or both together can trigger seasonal changes in serum leptin level, body mass, thermogenesis, and energy intake. Our data demonstrate that Brandt's voles showed a remarkable decrease in body mass in both the cold and a short photoperiod. However, no significant changes in body mass were found for gerbils exposed to similar conditions. The short photoperiod induced a decrease in serum leptin levels for both voles and gerbils that might contribute to an increase in energy intake. Furthermore, the short photoperiod induced an increase of uncoupling protein 1 (UCP1) content for both voles and gerbils, and cold can further enhance the increase in voles. No interactions between photoperiod and temperature were detected for the two species. Brandt's voles can decrease their body mass through changes in energy intake and expenditure, while Mongolian gerbils can keep body mass relatively stable by balancing energy metabolism under winterlike conditions. Leptin was potentially involved in the regulation of body mass and thermogenic capacity for the two species.  相似文献   

12.
光周期对布氏田鼠和长爪沙鼠体重和能量代谢的影响   总被引:13,自引:6,他引:7  
本文测定了光周期对雄性布氏田鼠和长爪沙鼠的体重、基础代谢率和能量代谢的影响。动物从长光照(16L∶8D , LD) 转入短光照(8L∶16D , SD) 条件下驯化6 周(田鼠) 和7 周(沙鼠) 。结果显示: (1) 无论在LD还是SD 条件下, 两种动物的体重都趋于增加, 但反应程度不同也具有种间差异性。两种动物的体重对光周期的反应有时段性, 约14 d 前两种动物的体重增加迅速, 而后增加缓慢, 3 周左右趋于稳定。短光照条件下布氏田鼠和长爪沙鼠的体重分别增长了37 %和11 % , 均低于长光照组(分别为47 %和25 %) , 说明短光照条件下布氏田鼠和长爪沙鼠的体重增长较长光照缓慢; (2) 光照对两种动物的摄入能、消化能和可代谢能均没有显著影响,摄入能与体重的增长无关; (3) 光照对两种动物的基础代谢率无显著影响。这些结果表明: 布氏田鼠和长爪沙鼠在自然环境中, 可能以光周期作为一种信号, 当环境温度降低、食物质量变劣时, 采取降低体重以减少绝对能量需求的策略而适应环境。  相似文献   

13.
哺乳动物最大代谢率的研究进展   总被引:2,自引:0,他引:2  
最大代谢率(Maximum metabolic rate,MMR)是动物代谢的生理有限。本阐述了其有关概念,测定方法,发育过程中的变化,两种不同方法导致的MMR及其得验性,制约因子,影响因素(包括个体大小,系统发生,环境温度,海拔梯度,寄生虫与病毒),与非颤抖性产热(Nn-shivering thermogenesis,NST)和基础代谢率(Basal metabolic rate,BMR)的关系,以及其未来的研究方向。其中NMR和BMR的关系涉及到了内温性进化的呼吸能力模型,介绍了相关的生化基础及验证。  相似文献   

14.
Although the biological significance of individual variation in physiological traits is widely recognized, studies of their association with fitness in wild populations are surprisingly scarce. We investigated the effect of individual phenotypic variation in body mass, resting (RMR) and peak metabolic rates (PMR) on mortality of the root vole Microtus oeconomus. Body mass and metabolic rates varied significantly among consecutive years and were also age dependent, as individuals born in late summer and autumn were characterized by significantly lower body mass and metabolic rates than animals born earlier. At the beginning of winter voles born in spring and early summer exhibited reduced body mass and metabolic rates, whereas animals born later maintained lower body mass and RMR, which may be interpreted as phenotypic plasticity enhancing the probability of survival. Body mass had no significant effect on vole survival during summer. In contrast, smaller individuals were characterized by lower mortality during early winter, whereas higher body mass was positively associated with survival later in the season. High body‐mass‐corrected RMR positively affected survival in both summer and winter. The effect of PMR was apparent only during winter, though its direction (and correlation with RMR) varied among years. Deep snow cover negatively affected the survival of voles in both early and late winter. Ambient temperature was positively associated with winter survival, except for late winter, when rising temperature caused flooding of vole habitat. We conclude that the lack of consistency in the directionality and strength of the effects of body mass and metabolic rates on winter survival does not undermine their importance, but rather demonstrates the ability of individuals to adjust metabolic rate to changing environmental conditions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 297–309.  相似文献   

15.
哺乳动物在出生前后所经历的环境条件对其成年后的行为和生理等具有重要影响。环境温度是影响动物后代表型的重要因素之一。本研究将分娩当天的布氏田鼠母体和幼仔在常温(23℃±1℃)或低温(4℃±1℃)饲养,断乳(21日龄)时转至常温环境,至第63日龄时再随机将两组动物各分为常温组和低温暴露组,期间检测体重、摄食量、静止代谢率、认知能力和神经细胞增殖和存活等,以验证哺乳期的低温经历可影响成年动物的代谢生理、行为表型和相关脑区神经再生的假说。结果发现:哺乳期低温经历导致成年布氏田鼠摄食量显著降低,与代谢有关的下丘脑以及学习记忆有关的海马区细胞增殖和存活数量减少。当动物在成年期面临冷暴露时,与哺乳期常温经历的动物相比,哺乳期低温经历的动物摄食量较低,在Y迷宫新异臂中的穿梭次数和停留时间显著降低,但海马和下丘脑部分核团的细 胞增殖以及海马CA的细胞存活明显升高。这表明哺乳期低温经历对布氏田鼠的能量代谢、行为和相关脑区的成体神经再生产生了持久的抑制效应,但成年后再次面对低温时,动物的代谢能力和代谢及学习记忆相关脑区的神经细胞可塑性优于哺乳期未曾经历低温的动物。  相似文献   

16.
能量代谢对动物的存活和繁殖等生活史特征具有重要的调控作用.布氏田鼠(Lasiopodomys brandtii)和长爪沙鼠(Meriones unguiculatus)是内蒙古草原同域分布的两种啮齿动物,前者的体重和野外寿命要明显小于后者,这符合寿命随体型增大而增加的一般规律.本研究进一步探讨了随年龄增加,两种动物的能量代谢特征的改变.发现布氏田鼠的非颤抖性产热能力随年龄增加而降低,而长爪沙鼠的非颤抖性产热能力随年龄增加而保持稳定.布氏田鼠的摄食能力和身体脂肪储备随年龄增加而降低;而长爪沙鼠摄食能力不随年龄改变,脂肪储备则随年龄增加而增加.长爪沙鼠的基础代谢水平低于布氏田鼠,其繁殖成熟时间更长.本研究推测,这些随年龄而变的生理特征反映了两种动物不同的生活史对策:布氏田鼠更倾向于尽快繁殖,其他与生存相关的生理指标随年龄增加而迅速降低,而长爪沙鼠更倾向于将能量投资到较晚期的存活和繁殖.  相似文献   

17.
Lactation is the most energetically demanding period in the female mammal's life. We measured maternal energy intake, uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), serum-leptin concentration, and litter growth in lactating Brandt's voles (Lasiopodomys brandtii) with different litter sizes. Litter mass was positively related to litter size but there was no difference in pup mass at birth. Maternal gross energy intake at peak lactation was positively correlated with litter size and litter mass. Maternal resting metabolic rate (RMR) was positively correlated with litter mass, but not with litter size. No significant differences were detected in body-fat mass, serum-leptin concentration, or UCP1 in lactating voles with different litter sizes. Serum-leptin concentration was negatively correlated with energy intake during lactation. Our data did not support the hypothesis that there is a trade-off in energy allocation between maternal maintenance and offspring growth in lactating Brandt's voles, but support the idea that if the mothers with ten pups should have less energy available for their maintenance than mothers raising fewer pups. Also, leptin is probably not the only factor that induces the high energy intake in mothers with large litter sizes, although it was involved in the regulation of energy intake during lactation.  相似文献   

18.
Potential for adaptation to climate change in a coral reef fish   总被引:1,自引:0,他引:1       下载免费PDF全文
Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness‐related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild‐caught breeding pairs were reared for two generations at current‐day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise.  相似文献   

19.
Dispersal capacity is a key life‐history trait especially in species inhabiting fragmented landscapes. Evolutionary models predict that, given sufficient heritable variation, dispersal rate responds to natural selection imposed by habitat loss and fragmentation. Here, we estimate phenotypic variance components and heritability of flight and resting metabolic rates (RMRs) in an ecological model species, the Glanville fritillary butterfly, in which flight metabolic rate (FMR) is known to correlate strongly with dispersal rate. We modelled a two‐generation pedigree with the animal model to distinguish additive genetic variance from maternal and common environmental effects. The results show that FMR is significantly heritable, with additive genetic variance accounting for about 40% of total phenotypic variance; thus, FMR has the potential to respond to selection on dispersal capacity. Maternal influences on flight metabolism were negligible. Heritability of flight metabolism was context dependent, as in stressful thermal conditions, environmentally induced variation dominated over additive genetic effects. There was no heritability in RMR, which was instead strongly influenced by maternal effects. This study contributes to a mechanistic understanding of the evolution of dispersal‐related traits, a pressing question in view of the challenges posed to many species by changing climate and fragmentation of natural habitats.  相似文献   

20.
Metabolic disorders have a large heritable component, and have increased markedly in human populations over the past few generations. Genome-wide association studies of metabolic traits typically find a substantial unexplained fraction of total heritability, suggesting an important role of spontaneous mutation. An alternative explanation is that epigenetic effects contribute significantly to the heritable variation. Here, we report a study designed to quantify the cumulative effects of spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the activity and concentration of two metabolic enzymes and the standing pools of their associated metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to that of morphological and life-history traits. However, those studies were not designed to account for short-term heritable effects. We find that the short-term heritable variance for most traits is of similar magnitude as the variance among MA lines. This result suggests that the potential heritable effects of epigenetic variation in metabolic disease warrant additional scrutiny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号