共查询到20条相似文献,搜索用时 0 毫秒
1.
Seasonal changes in an animal's morphology, physiology, and behavior are considered to be an adaptive strategy for survival and reproductive success. In the present study, we examined body weight and several behavioral, physiological, hormonal, and biochemical markers in seasonally acclimatized Brandt's voles (Microtus brandti) to test our hypothesis that Brandt's voles can decrease energy intake associated with decrease in body weight, body fat content, serum leptin level, and increasing thermogenesis in winter conditions. We found that the body weight of Brandt's voles was lowest in winter (December to February) and highest in spring and early summer (May to June). This seasonal variation in body weight was associated with changes in other markers examined. For example, the winter decrease in body weight was accompanied by increased energy intake and enhanced nonshivering thermogenesis (NST) as well as by decreased body fat mass and reduced levels of circulating leptin. Further, circulating levels of leptin were positively correlated with body weight and body fat mass, and negatively correlated with energy intake and uncoupling protein 1 contents. Together, these data do not support our hypothesis and suggest that leptin may be involved in this process and serve as a starvation signal in Brandt's voles. 相似文献
2.
Environmental cues play important roles in the regulation of an animal's physiology and behavior. The purpose of the present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake and thermogenic capacity, associated with changes in serum leptin levels in Brandt's voles (Lasiopodomys brandtii). We found that Brandt's voles increased resting metabolic rate (RMR) and energy intake and kept body mass stable when exposed to the cold while showed a significant increase in body mass after rewarming. The increase in body mass after rewarming was associated with the higher energy intake compared with control. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) increased in the cold and reversed after rewarming. Serum leptin levels decreased in the cold while increased after rewarming, associated with the opposite changes in energy intake. Further, serum leptin levels were positively correlated with body mass and body fat mass. Together, these data supported our hypothesis that ambient temperature was a cue to induce changes in body mass and metabolism. Serum leptin, as a starvation signal in the cold and satiety signal in rewarming, was involved in the processes of thermogenesis and body mass regulation in Brandt's voles. 相似文献
3.
We investigated the correlation between torpor frequency and capacity for non-shivering thermogenesis (NST) in Siberian hamsters ( Phodopus sungorus) during 25 weeks of acclimation to cold and short days. We hypothesized that torpor use is conditioned on the development of brown adipose tissue (BAT) capacity for NST. We found that (1) the degree of noradrenaline (NA)-induced hyperthermia was positively correlated with torpor frequency and its length and depth, and (2) the maximum response to NA occurred at the time of day when hamsters naturally arouse from torpor. The present study quantifies the correlation between torpor frequency and NST capacity and we suggest that a well-developed NST capacity is a prerequisite for the occurrence of torpor. 相似文献
4.
1. 1.|Resistance to cold through non-shivering thermogenesis (the absolute increase in O2 consumption caused by noradrenaline injection) was increased 3-fold in individuals of the broad-toothed mouse A. mystacinus, kept for 3 weeks under a short photoperiod (long scotophase 8L:16D) at an ambient temperature of 28°C, compared to control conditions (12L:12D; 28°C), and did not differ significantly from the winter-acclimatized group. 2. 2.|Acclimation of the same individuals to long scotophase and cold (8L:16d; 7°C) caused a significant (P < 0.01) increase in absolute O2 consumption and maximal body temperature, as a response to noradrenaline injectin, when compared to long-scotophase individuals (8L:16D; 28°C). 3. 3.|The results of this study support the idea that winter acclimatization of heat-production mechanisims may be induced by the extension of scotophase, which cycles very regulary in nature and in the Mediterranean region occurs before the beginning of the cold season. Author Keywords: Non-shivering thermogenesis; long scotophase; winter acclimatization; photoperiod; resistance to cold; Apodemus mystacinus 相似文献
5.
Despite the importance of metabolic rate in determining flight time of tsetse and in mediating the influence of abiotic variables on life history parameters (and hence abundance and distribution), metabolic rate measurements and their repeatability have not been widely assessed in these flies. We investigate age-related changes in standard metabolic rate (SMR) and its repeatability, using flow-through respirometry, for a variety of feeding, gender and pregnancy classes during early adult development in laboratory-reared individuals of the tsetse fly, Glossina pallidipes. Standard metabolic rate (144-635 microW) was generally within 22% of previous estimates, though lower than the values found using closed system respirometry. There was no significant difference between the genders, but metabolic rate increased consistently with age, probably owing to flight muscle development. Repeatability of metabolic rate was generally high (r=0.6-.09), but not in younger teneral adults and pregnant females (r approximately equal to 0.05-0.4). In these individuals, low repeatability values are a consequence of muscle or in utero larval development. Tsetse and other flies generally have a much higher metabolic rate, for a given size, than do other insect species investigated to date. 相似文献
6.
- (1)
- To investigate the effect of fasting and refeeding on the body mass, thermogenesis and serum leptin in Brandt's voles, the changes in body and body fat mass, resting metabolic rate (RMR), mitochondrial cytochrome c oxidase (COX) activity in liver and brown adipose tissue (BAT), uncoupling protein 1 (UCP1) content of BAT, serum leptin level and post-fasting food intake were monitored and measured. 相似文献
7.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in small, wild mammals. To determine the contributions of photoperiod and cold on seasonal changes in energy metabolism and body mass, the resting metabolic rates (RMR), nonshivering thermogenesis (NST), energy intake and gut morphology of the tree shrews were determined in winter and summer and in laboratory acclimated animals. Body mass, RMR and NST increased in winter, and these changes were mimicked by exposing animals to short-day photoperiod or cold in the animal house. Energy intake and digested energy also increased significantly in winter, and also during exposure of housed animals to both short-day photoperiod and cold. The lengths and weights of small intestine increased in winter. These results indicated that Tupaia belangeri overcomes winter thermoregulatory challenges by increasing energy intake and thermogenesis, and adjusted gut morphology to balance the total energy requirements. Short-day photoperiod and cold can serve as environmental cues during seasonal acclimatization. 相似文献
8.
Individual female Episyrphus balteatus (DeGeer) (Diptera: Syrphidae) show different oviposition preferences when presented with two aphid prey species, Aphis sambuci L. and A. fabae (Scop). After larvae were reared on those aphids, some fitness components indicated that individual females were adapted
to different host-use strategies, with preference for one aphid prey species entailing a trade-off in poorer performance on
another. We interpret the pattern of significant interactions as suggesting that natural selection has responded to the nutritional
value of prey.
Received: 11 September 1998 / Accepted: 16 November 1998 相似文献
9.
The mechanisms of thermogenesis and thermoregulation were studied in the tree shrew (Tupaia belangeri) and greater vole (Eothenomys miletus) of the subtropical region, and Brandt's vole (Microtus brandti), Mongolian gerbil (Meriones unguiculatus), Daurian ground squirrel (Spermophilus dauricus) and plateau pika (Ochotona curzoniae) of the northern temperate zone. Resting metabolic rate (RMR) and non-shivering thermogenesis (NST) increased significantly in T. belangeri, E. miletus, M. brandti and M. unguiculatus after cold acclimation (4 degrees C) for 4 weeks. In T. belangeri, the increase in RMR and thermogenesis at liver cellular level were responsible for enhancing the capacity of enduring cold stress, and homeothermia was simultaneously extended. Stable body temperature in M. brandti, E. miletus, M. unguiculatus and O. curzoniae was maintained mainly through increase in NST, brown adipose tissue (BAT) mass and its mitochondrial protein content, and the upregulation of uncoupling protein (UCP1) mRNA, as well as enhancement of the activity of cytochrome C oxidase, alpha-glycerophosphate oxidase and T(4) 5'-deiodinase in BAT mitochondria. The RMR in O. curzoniae and euthermic S. dauricus was not changed, while NST significantly increased during cold exposure; the former maintained their stable body temperature and mass, while body temperature in the latter declined by 4.8 degrees C. The serum T(3) concentration or ratio of T(3)/T(4) in all the species was enhanced after cold acclimation. Results indicated that: (1) the adaptive mechanisms of T. belangeri residing in the subtropical region to cold are primarily by increasing RMR and secondly by increasing NST, and the mechanisms of thermogenesis are similar to those in tropical mammals; (2) in small mammals residing in northern regions, the adaptation to cold is chiefly to increase NST; (3) the mechanism of cold-induced thermogenesis in E. miletus residing in subtropical and high mountain regions is similar to that in the north; (4) a low RMR in warm environments and peak RMR and NST in cold environments enabled M. unguiculatus to tolerate a semi-desert climate; (5) O. curzoniae has unusually high RMR and high NST, acting mainly via increasing NST to adapt to extreme cold of the Qinghai-Tibet Plateau; (6) the adaptation of euthermic S. dauricus to cold is due to an increase in NST and a relaxed homeothermia; and lastly (7) the thyroid hormone is involved in the regulation of cold adaptive thermogenesis in all the species studied. 相似文献
10.
The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of metabolic power output) present a method for elucidating the effects of ecological and evolutionary factors on the interface between physiology and life history in birds. In this paper we review variation in avian metabolic rates [basal metabolic rate (BMR; minimum normothermic metabolic rate), ... 相似文献
11.
Although individual variation is a key requirement for natural selection, little is known about the magnitude and patterns of individual variation in endocrine systems or the functional significance of that variation. Here we describe (1) the extent and repeatability of inter-individual variation in adrenocortical responses and (2) its relationship to sex-specific phenotypic quality, such as song duration and frequency and timing of egg laying. We measured adrenocortical responses to a standardized stressor in zebra finches (Taeniopygia guttata) at two life history stages: approximately day 16 (nestlings) and 3 months of age (sexually mature adults). Subsequently, we assessed phenotypic (reproductive) quality of all individuals as adults. Marked inter-individual variation in the adrenocortical response was seen in both sexes and ages, e.g., stress-induced corticosterone ranged from 2.2 to 62.5 ng/mL in nestlings and 5.0-64.0 ng/mL in adults. We found sex differences in (a) inter-individual variation in the adrenocortical response, (b) repeatability, and (c) relationships between corticosterone levels and phenotypic quality. In males, variation in nestling corticosterone was weakly but positively correlated with brood size and negatively correlated with nestling mass (though this relationship was dependent on one individual). There was no significant correlation of adrenocortical responses between two stages in males and adult phenotypic quality was significantly correlated only with adult corticosterone levels. In contrast, in females there was no relationship between nestling corticosterone and brood size or mass but adrenocortical response was repeatable between two stages (r2=0.413). Phenotypic quality of adult females was correlated with nestling baseline and adrenocortical response. 相似文献
12.
Over the past decade, the real-time cell analyzer (RTCA) has provided a good tool to the cell-based in vitro assay. Unlike the traditional systems that label the target cells with luminescence, fluorescence, or light absorption, RTCA monitors cell properties using noninvasive and label-free impedance measuring. However, realization of the maximum value of RTCA for applications will require assurance of within-experiment repeatability, day-to-day repeatability, and robustness to variations in conditions that might occur from different experiments. In this article, the performance and variability of RTCA is evaluated and a novel repeatability index ( RI) is proposed to analyze the intra-/inter-E-plate repeatability of RTCA. The repeatability assay involves six cell lines and two media (water [H 2O] and dimethyl sulfoxide [DMSO]). First, six cell lines are exposed to the media individually, and time-dependent cellular response curves characterized as a cell index ( CI) are recorded by RTCA. Then, the variations along sampling time and among repeated tests are calculated and RI values are obtained. Finally, a discriminating standard is set up to evaluate the degree of repeatability. As opposed to the standardized methodologies, it is shown that the presented index can give the quantitative evaluation for repeatability of RTCA within E-plate and variation on different days. 相似文献
13.
We measured resting metabolic rate (RMR), daily energy expenditure (DEE) and metabolisable energy intake (MEI) in two breeds of dog during peak lactation to test whether litter size differences were a likely consequence of allometric variation in energetics. RMR of Labrador retrievers (30 kg, n=12) and miniature Schnauzers (6 kg, n=4) averaged 3437 and 1062 kJ/day, respectively. DEE of Labradors (n=6) and Schnauzers (n=4) averaged 9808 and 2619 kJ/day, respectively. MEI of Labradors (n=12) was 22448 kJ/day and of Schnauzers (n=7) was 5382 kJ/day. DEE of Labrador pups (2.13 kg, n=19) was 974 kJ/day and Schnauzers (0.89 kg, n=7) were 490 kJ/day. Although Labradors had higher MEIs than Schnauzers during peak lactation, there was no difference in mass-specific energy expenditure between the two breeds. Hence, it is unlikely that litter size variation is a likely consequence of differences in maternal energy expenditure. Individual offspring were relatively more costly for mothers of the smaller breed to produce. Therefore, litter size variations were consistent with the expectation that smaller offspring should be more costly for mothers, but not that smaller mothers should per se invest more resources in reproduction. 相似文献
14.
Elevated levels of circulating corticosterone commonly occur in response to stressors in wild vertebrates. A rise in corticosterone, usually in animals of subordinate rank, results in a variety of effects on behavior and physiology. Behavioral and physiological responses to short-term increases in corticosterone are well studied. In contrast, the effects of chronic elevated levels of corticosterone are poorly understood, particularly in lizards. Here, we examined the long-term effects of exogenous corticosterone on locomotor performance, resting and active metabolic rate, and hematocrit in male side-blotched lizards Uta stansburiana. Corticosterone implantation resulted in higher levels of stamina relative to sham-surgery controls. In addition, lizards with elevated corticosterone exhibited lower resting metabolic rates relative to controls. Corticosterone had no effect on peak activity metabolism but did result in faster recovery times following exhaustive exercise. We suggest that elevated levels of corticosterone in response to dominance interactions promote enhanced locomotor abilities, perhaps as a flight response to avoid agonistic interactions. Furthermore, stressed lizards are characterized by lower resting metabolic rates, which may serve as strategy to conserve energy stores and enhance survival. 相似文献
15.
- (1)
- Resting metabolic rate (RMR), nonshivering thermogenesis (NST) and mitochondria cytochrome c oxydase (COX) activity of brown adipose tissue (BAT), as well as weight of skin and fur were measured in striped hamsters (Cricetulus barabensis) that were live-trapped in the summer, autumn, winter and spring. 相似文献
16.
This study investigated the effects of 12 weeks of aerobic exercise plus voluntary food restriction on the body composition, resting metabolic rate (RMR) and aerobic fitness of mildly obese middle-aged women. The subjects were randomly assigned to exercise/diet ( n = 17) or control ( n = 15) groups. The exercise/diet group participated in an aerobic training programme, 45–60 min · day –1 at 50%–60% of maximal oxygen uptake ( VO 2max), 3–4 days · week –1, and also adopted a self-regulated energy deficit relative to predicted energy requirements (–1.05 MJ · day –1 to –1.14 MJ · day –1 ). After the regimen had been followed for 12 weeks, the body mass of the subjects had decreased by an average of 4.5 kg, due mainly to fat loss, with little change of fat free mass ( m
ff). The absolute RMR did not change, but the experimental group showed significant increases in the RMR per unit of body mass (10%) and the RMR per unit of m
ff (4%). The increase in RMR/ m
ff was not correlated with any increase in VO 2max/ m
ff. The resting heat production per unit of essential body mass increased by an average of 21%, but the resting heat production rate per unit of fat tissue mass remained unchanged. We concluded that aerobic exercise enhances the effect of moderate dietary restriction by augmenting the metabolic activity of lean tissue. 相似文献
17.
Many birds exhibit considerable phenotypic flexibility in metabolism to maintain thermoregulation or to conserve energy. This flexibility usually includes seasonal variation in metabolic rate. Seasonal changes in physiology and behavior of birds are considered to be a part of their adaptive strategy for survival and reproductive success. House Sparrows ( Passer domesticus) are small passerines from Europe that have been successfully introduced to many parts of the world, and thus may be expected to exhibit high phenotypic flexibility in metabolic rate. Mass specific Resting Metabolic Rate (RMR) and Basal Metabolic Rate (BMR) were significantly higher in winter compared with summer, although there was no significant difference between body mass in summer and winter. A similar, narrow thermal neutral zone (25–28 °C) was observed in both seasons. Winter elevation of metabolic rate in House Sparrows was presumably related to metabolic or morphological adjustments to meet the extra energy demands of cold winters. Overall, House Sparrows showed seasonal metabolic acclimatization similar to other temperate wintering passerines. The improved cold tolerance was associated with a significant increase in VO 2 in winter relative to summer. In addition, some summer birds died at 5 °C, whereas winter birds did not, further showing seasonal variation in cold tolerance. The increase in BMR of 120% in winter, compared to summer, is by far the highest recorded seasonal change so far in birds. 相似文献
18.
The cowpea weevil ( Callosobruchus maculatus (Fabré)) exhibits several behavioral traits that are stable within, but vary among, strains. These traits are heritable and quantitative. We used cellulose acetate gel electrophoresis to quantify allozyme variation within and among laboratory cultures of four weevil strains and determine whether allozyme variation correlates with behavioral traits. Significant variation exists at 8 of 11 loci assayed and gene frequencies are significantly different among strains. The South Indian strain (SI) is most variable and measures of genetic distance set it apart from the other strains. It is also behaviorally unique. The Brazilian strain (BC) is most different from SI in allozyme diversity and behavioral phenotype, while two African strains (IITA, CAM) are intermediate in allozyme diversity and phenotype. These results are consistent with the known history of these strains and the differences in the allozymes parallel the differences in behavioral traits. 相似文献
19.
- 1. 1. The thermoregulatory responses to manipulations of photoperiod in wood mice (Apodemus sylvaticus), which were drawn from a population living at a high latitude (57°N) were studied.
- 2. 2. Mice captured in spring were acclimated to two different photoperiod regimes 16L:8D and 8L:16D at a constant ambient temperature of 24°C, for 3 weeks.
- 3. 3. Daily rhythms of body temperature, oxygen consumption and body temperature at various ambient temperatures, nonshivering thermogenesis (the response to a noradrenaline injection) and body mass were measured. Minimal overall thermal conductance was calculated for both groups.
- 4. 4. Acclimation to long photophase increased the thermoregulatory abilities at relatively high ambient temperatures while that of long-scotophase increased thermoregulatory abilities at low ambient temperatures.
- 5. 5. Changes in photoperiod may therefore be used as cues for seasonal acclimatization of thermoregulatory mechanisms in this population of wood mice.
相似文献
20.
The African rhombic egg eater ( Dasypeltis scabra) is a colubrid snake feeding exclusively on bird eggs. Frequency of feeding is governed by the seasonal availability of bird eggs; i.e., long fasting intervals change with relatively short periods when plenty of food is available. Intermittent feeding snakes show a remarkable postprandial increase of metabolic rate and digestive organ size. The postprandial increase in metabolic rate (specific dynamic action, SDA) in snakes is affected by meal size, temperature, and meal composition. A major portion of SDA in snakes is allocated to gastric function and the breakdown of the meal. We hypothesize that SDA in egg eaters is lower than in other snake species, because egg eaters feed on “liquid” food that does not require enzymatic breakdown in the stomach. We also hypothesized that other components of the postprandial response of egg eaters (e.g., size changes of the intestine and the liver) do not differ from other snakes. The standard metabolic rate and metabolic response to feeding were measured using closed-chamber respirometry. Size changes of small intestine and liver were measured using high-resolution transcutaneous ultrasonography. Standard metabolic rates of fasting egg eaters were in the same range of mass specific values as known from other snakes. Within 24 h after feeding, oxygen consumption doubled and peaked at 2 days after feeding. At the same time, the size of the small intestine and the cross-sectional diameter of the liver increased. Within 2 days after feeding, the size of the mucosal epithelium doubled its thickness. Liver size increased significantly within 24 h reaching maximum size 2–4 days after feeding. The size of both organs returned to fasting values within 7–10 days after feeding. The postprandial response of African rhombic egg eaters shows the same pattern and dynamics as known from other snake species. However, the factorial increase of metabolic rate during SDA is the lowest reported for any snake. A comparison with literature data supports the idea that SDA is mainly determined by gastric function and that it is low in egg eaters because they do not have to break down solid meals in the stomach as other snake species do. 相似文献
|