首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD (P) H-dependent enzymic systems, both of lipid peroxidation and chlorpromazine oxidative metabolism are shown to be localized in the microsomal fractions from human and rat brain. Hydroxy-derivatives of chlorpromazine (e.g. 7-OH-chlorpromazine) formed in the course of enzymic NADPH-dependent metabolism possess antioxidant activity and inhibit lipid peroxidation in the brain microsomes. The properties of enzymic NAD (P) H-dependent oxigenase systems in the membranes of the microsomal reticulum of the liver and brain are compared.  相似文献   

2.
The central nervous system of the mollusc Helix pomatia, like that of other molluscs, contains a very high level of dopamine. However, noradrenaline is weakly represented. These characteristics apply to the peripheral nervous system and more particularly to the heart. The study of the phenomena taking part in the synthesis and inactivation of catecholamines shows that these processes are not different in vertebrates and molluscs. Thus, in the particular case of Helix pomatia the synthesis of catecholamines is carried out by tyrosine hydroxylase, aromatic amino acid decarboxylase and dopamine-beta-hydroxylase. These enzymes are not only active in the ganglia and nerves, but also in the peripheral nervous system. The monoamines are associated with granules. The synthesized enzymes in the pericarya migrate due to the axonal flow and accumulate in the intracardiac nerve endings. In Helix pomatia, the enzymes participate actively in the local synthesis of catecholamines using the precursors tyrosine and DOPA. We have little information on the uptake of dopamine by nervous structures, but it would seem that this phenomenon seems to play an active role in the synaptic inactivation of dopamine. The glial elements also play a part in uptake and inactivation. In most species the nervous system has very little monoamine oxidase, and there is even less in the heart. The enzymic activity depends on substrates and is more active with dopamine than with 5-hydroxytryptamine. The exact localization of monoamine oxidase in the tissues is unknown. However, we believe that it plays a part in the neuronal regulation of dopamine levels and in its synaptic inactivation. The same applies for catechol O-methyltransferase.  相似文献   

3.
The location of the enzymic system involved in the metabolism of 4-hydroxy-2-3-pentene-1-al (HPE) in the livers of female mice (CBA/CA) has been established. All mitochondrial membranes showed some activity with slightly higher metabolism in the matrix. The enzymic system had a pH optimum of 8.8 using pyrophosphate buffer. Suitable marker enzymes were used to test the contamination of the different submitochondrial fractions with each other.  相似文献   

4.
The generation and metabolism of bioactive peptides involves a series of highly ordered proteolytic events. This post-translational processing can occur either within the cell, at the cell surface or after secretion. In the central nervous system a number of extracellular peptidases have been implicated in the regulated processing of peptides, particularly in the regulation of neuroendocrine function. The aim of this study has been to identify the peptidases involved in the metabolism of gonadotropin-releasing hormone (GnRH) and to characterize the factors and the mechanisms by which the activity of these peptidases are regulated. We have shown that both prolylendopeptidase and the thimet oligopeptidase EC 3.4. 24.15 are involved in GnRH metabolism and that both oestrogen and thiol-based reductants could be involved in the physiological regulation of their activities.  相似文献   

5.
There are several kinds of regulation that enable microbes to cope with rapidly changing supplies of nutrients. This is exemplified by sugar metabolism in Saccharomyces cerevisiae. Some readily reversible controls affect the activity of enzymes, either by allosteric activation and deactivation, which often occur within seconds, or by covalent modification, within minutes. Other controls regulate the amount of enzyme present in the cells, either by irreversible proteolytic inactivation of the enzyme, or by influencing enzymic synthesis. The nomenclature of these processes is often confused.  相似文献   

6.
The white adipose tissue was initially largely known only as an energy storage tissue. It is now well recognized that white adipose tissue is a major endocrine and secretory organ, which releases a wide range of protein signals and factors termed adipokines. The regulation of adipocyte metabolism is an important factor for the understanding of obesity, and some mechanisms are still unknown. Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the central nervous system. There is substantial evidence demonstrating that the central nervous system also directly regulates adipocyte metabolism. In this review, we discuss the central actions of some peptides with an important role in energy balance regulation on adipocyte metabolism and the physiological relevance of these actions.  相似文献   

7.
The regulatory effect of hormones on a steady-state process that consists of the mediated transport of a substrate across a membrane and a consecutive enzymic reaction is examined theoretically. The regulation of such a process depends not only on the effect of the hormone on the transport system, but also on the kinetic parameters of the reaction. The rate of metabolism can both increase and decrease due to a hormonal increase in the transport capacity, the affinity of the carrier to the substrate or the amount of energy involved, although the rate of mediated transport per se is always enhanced by such effects. Substrate inhibition of the enzyme can lead to multiple steady states and, thus, amplify hormone action. The quantitative results are believed to give insight into the hormonal regulation of both cellular uptake and intracellular metabolism.  相似文献   

8.
The physiology and behaviors related to energy balance are monitored by the nervous and humoral systems. Because of the difficulty in treating diabetes and obesity, elucidating the energy balance mechanism and identifying critical targets for treatment are important research goals. Therefore, the purpose of this article is to describe energy regulation by the central nervous system(CNS) and peripheral humoral pathway. Homeostasis and rewarding are the basis of CNS regulation. Anorexigenic or orexigenic effects reflect the activities of the POMC/CART or NPY/AgRP neurons within the hypothalamus. Neurotransmitters have roles in food intake, and responsive brain nuclei have different functions related to food intake, glucose monitoring, reward processing. Peripheral gut-or adipose-derived hormones are the major source of peripheral humoral regulation systems. Nutrients or metabolites and gut microbiota affect metabolism via a discrete pathway. We also review the role of peripheral organs, the liver,adipose tissue, and skeletal muscle in peripheral regulation. We discuss these topics and how the body regulates metabolism.  相似文献   

9.
Kang KS  Yahashi S  Matsuda K 《Peptides》2011,32(11):2242-2247
Ghrelin was first identified and characterized from rat stomach as an endogenous ligand for the growth hormone secretagogue receptor. Ghrelin and its receptor system are present not only in peripheral tissues such as stomach and intestine, but also in the central nervous system of mammals. Interestingly, administration of ghrelin induces an orexigenic effect and also modifies locomotor activity, suggesting its involvement in feeding control and the regulation of energy balance, in addition to the regulation of growth hormone release. Information about ghrelin in non-mammals, such as teleost fish, has also been increasing, and important data have been obtained. An understanding of the evolutionary background of the energy regulation system and the central and peripheral roles of ghrelin in teleost fish could provide indications as to their roles in mammals, particularly humans. In this review, we overview the central and peripheral effects of ghrelin on energy balance, locomotor activity, and lipid metabolism in teleost fish.  相似文献   

10.
Among the factors playing a crucial role in the regulation of energy metabolism, gastro-intestinal peptides are essential signals to maintain energy homeostasis as they relay to the central nervous system the informations about the nutritional status of the body. Among these factors, preproghrelin is a unique prohormone as it encodes ghrelin, a powerful GH secretagogue and the only orexigenic signal from the gastrointestinal tract and obestatin, a proposed functional ghrelin antagonist. These preproghrelin-derived peptides may contribute to balance energy intake, metabolism and body composition by regulating the activity of the GH/IGF-1 axis and appetite. Whereas the contribution of ghrelin has been well characterized, the role of the more recently identified obestatin, in this regulatory process is still controversial. In this chapter, we describe the contribution of these different preproghrelin-derived peptides and their receptors in the regulation of GH secretion and feeding. Data obtained from pharmacological approaches, mutant models and evaluation of the hormones in animal and human models are discussed.  相似文献   

11.
We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat regulation. Serotonergic fat regulation is dependent on a neurally expressed channel and a G protein-coupled receptor that initiate signaling cascades that ultimately promote lipid breakdown at peripheral sites of fat storage. In turn, intermediates of lipid metabolism generated in the periphery modulate feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses of the nervous system to the perception of nutrient availability.  相似文献   

12.
Peptide hormones are key messengers in the signaling network between the nervous system, endocrine glands, energy stores and the gastrointestinal tract that regulates feeding and metabolism. Studies on the Drosophila nervous system have uncovered parallels and homologies in homeostatic peptidergic signaling between fruit flies and vertebrates. Yet, the role of enteroendocrine peptides in the regulation of feeding and metabolism has not been explored, with research hampered by the unknown identity of peptides produced by the fly's intestinal tract. We performed a peptidomic LC/MS analysis of the fruit fly midgut containing the enteroendocrine cells. By MS/MS fragmentation, we found 24 peptides from 9 different preprohormones in midgut extracts, including MIP-4 and 2 forms of AST-C. DH(31), CCHamide1 and CCHamide2 are biochemically characterized for the first time. All enteroendocrine peptides represent brain-gut peptides, and apparently are processed by Drosophila prohormone convertase 2 (AMON) as suggested by impaired peptide detectability in amon mutants and localization of amon-driven GFP to enteroendocrine cells. Because of its genetic amenability and peptide diversity, Drosophila provides a good model system to study peptide signaling. The identification of enteroendocrine peptides in the fruit fly provides a platform to address functions of gut peptide hormones in the regulation of feeding and metabolism.  相似文献   

13.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

14.
The effect of 2,450-MHz pulsed microwave radiation on the enzyme activity of membrane-free acetylcholinesterase was studied while the enzyme was in the microwave field. We found no significant effect of microwave radiation on enzyme activity using a wide variety of power densities, pulse widths, repetition rates, and duty cycles. This suggests that simple, direct modification by microwave energy of acetylcholinesterase structure and enzymic activity is not related to microwave alteration of acetylcholinesterase central nervous system levels.  相似文献   

15.
Important histochemical observations on the nervous system, obtained in the last years, showed characteristic changes in folic acid and in its main enzyme--dihydrofolate reductase--in the old nerve cells. In neurons, the enzymic activity gradually decreased and folic acid accumulated in ageing. Glial cells preserved or slightly increased the same folate enzyme, but folic acid markedly increased in senescence. Opinions and suggestions bound to these observations are presented.  相似文献   

16.
Maccarrone M 《Life sciences》2005,77(14):1559-1568
Endocannabinoids are biologically active amides, esters and ether of long chain polyunsaturated fatty acids. They interact with several neurotransmitters in the central nervous system (CNS), and with various signaling molecules (including cytokines) in the periphery. Critical interactions have emerged also with steroids, another group of well-known bioactive lipids, both centrally and peripherally. Here, I briefly review the targets of the combined action of endocannabinoids and steroids, and the available evidence concerning the direct regulation by the latter compounds of the proteins of the endocannabinoid system (ES). In addition, I discuss recent examples of endocannabinoids and steroids working together in the central nervous system and in the periphery, which allowed to disclose some molecular details of the interactions between these two groups of lipids. Taken together, available data suggest that steroids can modulate the endocannabinoid tone, through genomic or nongenomic regulation, and that endocannabinoids can complement the biological activity of steroids. In this line, the issues concerning the tissue- and species-specificity of the endocannabinoid-steroid interface, and the possibility that also endocannabinoids may modulate steroid metabolism, are addressed. Finally, I present the hypothesis that retrograde endocannabinoid signaling, by reducing striatal glutamate release, may be part of the molecular events responsible for the influence of steroids on drug abuse.  相似文献   

17.
Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity [3H]-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature.  相似文献   

18.
Insect flight is the most energy-demanding activity of animals. It requires the coordination and cooperation of many tissues, with the nervous system and neurohormones controlling the performance and energy metabolism of muscles, and of the fat body, ensuring that the muscles and nerves are supplied with essential fuels throughout flight. Muscle metabolism can be based on several different fuels, the proportions of which vary according to the insect species and the stage in flight activity. Octopamine, which acts as neurotransmitter, neuromodulator or neurohormone in insects, has a central role in flight. It is present in brain, ventral ganglia and nerves, supplying peripheral tissues such as the flight muscles, and its concentration in hemolymph increases during flight. Octopamine has multiple effects during flight in coordinating and stimulating muscle contraction and also energy metabolism partly by activating phosphofructokinase via the glycolytic activator, fructose 2,6-bisphosphate. One important muscle fuel is trehalose, synthesized by the fat body from a variety of precursors, a process that is regulated by neuropeptide hormones. Other fuels for flight include proline, glycerol and ketone bodies. The roles of these and possible regulation in some insect species are discussed.  相似文献   

19.
Studies have been made on the activity of erythrocyte acetylcholinesterase in 18 species of wild and laboratory rodents. Significant differences in the enzymic activity unrelated to taxonomic position of rodents were revealed. Negative correlation was found between the enzymic activity and body mass in rodents. The relationship between these parameters for wild rodents is approximated by an allometric equation Y = 1.1 . X-0.73, for laboratory species--Y = 1.5 . X-0.41. It is suggested that the revealed relationship indicates the existence of a connection between the activity of erythrocyte acetylcholinesterase and the intensity of metabolism in small rodents.  相似文献   

20.
The paper reviews hypotheses explaining the regulation of food intake in mammals that have addressed specific anatomical structures in the brain. An hypothesis, poikilostasis, is introduced to describe multiple, homeostatic states whereby the regulation of metabolism and feeding occur in birds. Examples are given for both wild and domestic avian species, illustrating dynamic shifts in homeostasis responsible for the changes in body weights that are seen during the course of an annual cycle or by a particular strain of bird. The following neural structures are reviewed as each has been shown to affect food intake in birds or in mammals: ventromedial hypothalamic nucleus (n.), lateral hypothalamic area, paraventricular hypothalamic n., n. tractus solitarius and area postrema, amygdala, parabrachial n., arcuate n. and bed n. of the stria terminalis. Two neural pathways are described which have been proposed to regulate feeding. The trigeminal sensorimotor pathway is the most complete neural pathway characterized for this behavior and encompasses the mechanics of pecking, grasping and mandibulating food particles from the tip of the bill to the back of the buccal cavity. A second pathway, the visceral forebrain system (VFS), affects feeding by regulating metabolism and the balance of the autonomic nervous system. Wild, migratory birds are shown to exhibit marked changes in body weight which are hypothesized to occur due to shifts in balance between the sympathetic and parasympathetic nervous systems. Domestic avian species, selected for a rapid growth rate, are shown to display a dominance of the parasympathetic nervous system. The VFS is the neural system proposed to effect poikilostasis by altering the steady state of the autonomic nervous system in aves and perhaps is applicable to other classes of vertebrates as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号