首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper describes a cattle serum antigen (LdlA1) located on a low-density lipoprotein and detected by single radial diffusion. The specificity is inherited in a simple Mendelian manner and the gene controlling its synthesis is inherited independently from the one controlling the synthesis of the α2 macroglobulin McA1 antigen.  相似文献   

2.
3.
This paper presents evidence for an IgGi allotype detected by a sheep antibovine serum. The character which appears to be inherited in a simple Mendelian way has been named da1.  相似文献   

4.
5.
Incubation of human low-density lipoprotein (LDL) with glucose results in a nonenzymatic formation of a Schiff base between the monosaccharide and lysyl residues of apolipoprotein B. Increasing the percentage of lysyl residues of apolipoprotein B modified by glycosylation decreases the fractional catabolic rate of the glycosylated LDL, and decreases the metabolism of the glycosylated LDL by human skin fibroblasts. The glycosylated LDL, containing 20-40% of total lysyl residues of apoprotein B modified, was metabolized at a slow rate by both human skin fibroblasts and mouse peritoneal macrophages. These results led to the suggestion that glycosylated LDL is primarily catabolized via a receptor-independent process. Assuming LDL catabolism occurs via receptor-dependent and receptor-independent processes, the ratio of (fractional catabolic rate of glycosylated LDL)/(fractional catabolic rate of native LDL) should be an estimate of the percentage of LDL catabolism via the receptor-independent process. From the fractional catabolic rates of glucose-LDL (20-40% of lysyl residues modified) and galactose-LDL (30-60% of lysyl residues modified) 41% and 30% respectively, of LDL catabolism occurred by a receptor-independent process.  相似文献   

6.
4-Hydroxynonenal (HNE) is a major aldehydic propagation product formed during peroxidation of unsaturated fatty acids. The aldehyde was used to modify freshly prepared human low-density lipoprotein (LDL). A polyclonal antiserum was raised in the rabbit and absorbed with freshly prepared LDL. The antiserum did not react with human LDL, but reacted with CuCl2-oxidized LDL and in a dose-dependent manner with LDL, modified with 1, 2 and 3 mM-HNE, in the double-diffusion analysis. LDL treated with 4 mM of hexanal or hepta-2,4-dienal or 4-hydroxyhexenal or malonaldehyde (4 or 20 mM) did not react with the antiserum. However, LDL modified with 4 mM-4-hydroxyoctenal showed a very weak reaction. Lipoprotein (a) and very-low-density lipoprotein were revealed for the first time to undergo oxidative modification initiated by CuCl2. This was evidenced by the generation of lipid hydroperoxides and thiobarbituric acid-reactive substances, as well as by a marked increase in the electrophoretic mobility. After oxidation these two lipoproteins also reacted positively with the antiserum against HNE-modified LDL.  相似文献   

7.
The atherogenicity of triglyceride-rich lipoprotein has been revealed. This study was performed to explore the clinical importance of triglyceride-rich lipoprotein by measuring its cholesterol content and comparing it with other lipoprotein fractions. Blood samples were obtained from 103 patients whose fasting plasma triglyceride concentration exceeded 300 mg/dl. The cholesterol monitor using the technique of high-performance liquid chromatography was used for the measurement of their plasma cholesterol concentrations and the determination of cholesterol distribution among lipoprotein fractions. This monitor showed 4 peaks: large-triglyceride-rich lipoprotein, small-triglyceride-rich lipoprotein, low-density lipoprotein, and high-density lipoprotein. Total cholesterol increased with increasing triglyceride. The increment of total cholesterol was nearly equal to that of small-triglyceride-rich lipoprotein cholesterol. Small-triglyceride-rich lipoprotein cholesterol exceeded low-density lipoprotein cholesterol where plasma triglyceride concentration was over 500 mg/dl. In conclusion, triglyceride-rich lipoprotein may be clinically important for hypertriglyceridemic patients as a source of cholesteryl ester in arteriosclerotic plaques, and increased triglyceride-rich lipoprotein cholesterol may be used as a basis for hypertriglyceridemia atherogenicity. Our study suggests that hypertriglyceridemia should be treated to prevent arteriosclerotic disease.  相似文献   

8.
Electronegative low-density lipoprotein   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: The occurrence in blood of an electronegatively charged LDL was described in 1988. During the 1990s reports studying electronegative LDL (LDL(-)) were scant and its atherogenic role controversial. Nevertheless, recent reports have provided new evidence on a putative atherogenic role of LDL(-). This review focuses on and discusses these new findings. RECENT FINDINGS: In recent years, LDL(-) has been found to be involved in several atherogenic features through its action on cultured endothelial cells. LDL(-) induces the production of chemokines, such as IL-8 and monocyte chemotactic protein 1, and increases tumor necrosis factor-alpha-induced production of vascular cell adhesion molecule 1, with these molecules being involved in early phases of leukocyte recruitment. LDL(-) from familial hypercholesterolemic patients also decreases DNA synthesis and intracellular fibroblast growth factor 2 production, which may contribute to impaired angiogenesis and increased apoptosis. In addition, the preferential association of platelet-activating factor acetylhydrolase with LDL(-) has been reported, suggesting a proinflammatory role of this enzyme in LDL(-). SUMMARY: Recent findings suggest that LDL(-) could contribute to atherogenesis via several mechanisms, including proinflammatory, proapoptotic and anti-angiogenesis properties. Further studies are required to define the role of LDL(-) in atherogenesis more precisely and to clarify mechanisms involved in endothelial cell activation.  相似文献   

9.
Human monocytes, upon activation with opsonized zymosan, altered low-density lipoprotein (LDL) during a 24-h co-incubation, resulting in its oxidation and acquisition of cytotoxic activity against target fibroblast cell lines. Both the oxidation of LDL and its conversion to a cytotoxin were enhanced with time of incubation, with the most substantial changes occurring after 6 h of culture of LDL with activated monocytes. Unactivated monocytes did not mediate either alteration. Superoxide anion (O2-) participated in both the oxidation of LDL and its conversion to a cytotoxin since addition of superoxide dismutase (SOD) at the beginning of the co-incubation inhibited, in a concentration dependent fashion, both the monocyte-mediated oxidation and the monocyte-mediated conversion of LDL to a cytotoxin. As expected, the rate of superoxide anion release was greatest during the respiratory burst, very early in the 24-h incubation (0 to 2 h); however, exposure of LDL to monocytes during the respiratory burst was not required for LDL oxidation. The lower levels of O2- released by the cells hours after the respiratory burst had subsided were sufficient to lead to the initiation of LDL oxidation. Three results indicated that the oxidative modification of LDL into a cytotoxin required O2(-)-independent free radical propagation after O2(-)-dependent initiation. First, oxidation of LDL exposed to the activated, superoxide anion-releasing monocytes for 6 h could be almost completely blocked by the addition at 6 h of the general free radical scavenger butylated hydroxytoluene, but not by SOD. Second, LDL oxidation proceeded even after removal of LDL from the superoxide anion-producing, activated cells after various durations of exposure. Third, the development of substantial levels of lipid peroxidation products and the development of greater cytotoxicity occurred after 6 h of exposure of LDL to activated cells, long after peak O2- release had subsided. These results lead us to conclude that monocyte-mediated oxidation of LDL, leading to its transformation into a cytotoxin, requires release of O2- occurring as a result of activation but not necessarily during the respiratory burst, and also requires O2(-)-independent free radical propagation. The modification of LDL into a potent toxin by activated monocytes may explain the tissue damage in atherosclerotic lesions and other pathologic sites in which inflammatory cells congregate.  相似文献   

10.
Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein.   总被引:32,自引:0,他引:32  
Oxidative modification of low-density lipoprotein (LDL) enhances its uptake by macrophages in tissue culture and in vivo may underly the formation of arterial fatty streaks, the progenitors of atheroma. We investigated the possible protection which high-density lipoprotein (HDL) affords against LDL oxidation. The formation of lipoperoxides and thiobarbituric acid reactive substances when LDL was incubated with copper ions was significantly decreased by HDL. The enzyme, paraoxonase (E.C. 3.1.8.1), purified from human HDL, had a similar effect and thus may be the component of HDL responsible for decreasing the accumulation of lipid peroxidation products.  相似文献   

11.
12.
Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus.  相似文献   

13.
14.
This study examines the protein modification procedures available for inhibiting receptor recognition of low-density lipoprotein (LDL). Glycosylation with glucose, idose or ribose blocks the interaction of the lipoprotein with the high-affinity LDL receptor on cultured fibroblast membranes and delays its clearance from the plasma of rabbits. However, the prolonged incubation required in the process also changes the metabolic properties of the lipoprotein. An alternative approach using 2-hydroxyacetaldehyde-treated LDL completely blocks receptor recognition. This modified tracer has the same metabolic properties as the reductively methylated lipoprotein in rabbits and appears to be a suitable probe for the measurement of the receptor-independent LDL catabolic pathway in humans.  相似文献   

15.
Toxicity of enzymically-oxidized low-density lipoprotein   总被引:1,自引:0,他引:1  
Intravenous injection of cholesterol oxidase into hyperlipidemic rabbits in which aortic atheromatous lesions have been induced by dietary means is lethal within hours, whereas injection of the same enzyme into normal rabbits has no visible adverse effect. The lethal effect of the enzyme is explicable by the finding that injection of cholesterol-oxidase treated low-density lipoprotein kills normal rabbits, in contrast to untreated low-density lipoprotein which does not. Enzymically oxidized low-density lipoprotein was also found to be cytotoxic for two human cell lines and for cultured bovine aortic endothelial cells. We suggest that in vivo enzymic conversion of low-density lipoprotein cholesterol to low-density lipoprotein cholestenone may possibly play a role in the initiation of atheromatous lesions in humans.  相似文献   

16.
Mitogenic stimulation of lymphocytes is significantly inhibited by addition of human serum low-density lipoprotein that has undergone autoxidation, while no significant effect is seen with non-oxidized lipoprotein. The inhibition is effective for cells stimulated either by the plant lectin phytohemagglutinin or enzymatically by neuraminidase-galactose oxidase treatment. However, it is markedly attenuated when oxidized LDL is added to cells which have been triggered 24 hours earlier. Lipid extracts from oxidized LDL are similarly inhibitory, indicating that the effect is mediated by an oxidized lipid fraction.  相似文献   

17.
Oxidatively modified low-density lipoprotein (LDL), generated as a result of incubation of LDL with specific cells (e.g., endothelial cells, EC) or redox metals like copper, has been suggested to be an atherogenic form of LDL. Epidemiological evidence suggests that higher concentrations of plasma high-density lipoprotein (HDL) are protective against the disease. The effect of HDL on the generation of the oxidatively modified LDL is described in the current study. Incubation of HDL with endothelial cells, or with copper, produced much lower amounts of thiobarbituric acid-reactive products (TBARS) as compared to incubations that contained LDL at equal protein concentrations. Such incubations also did not result in an enhanced degradation of the incubated HDL by macrophages in contrast to similarly incubated LDL. On the other hand, inclusion of HDL in the incubations that contained labeled LDL had a profound inhibitory effect on the subsequent degradation of the incubated LDL by the macrophages while having no effect on the generation of TBARS or the formation of conjugated dienes. This inhibition was not due to the modification of HDL as suggested by the following findings. (A) There was no enhanced macrophage degradation of the HDL incubated with EC or copper alone, together with LDL, despite an increased generation of TBARS. (B) HDL with the lysine groups blocked (acetyl HDL, malondialdehyde (MDA) HDL) was still able to prevent the modification of LDL and (C) acetyl HDL and MDA-HDL competed poorly for the degradation of oxidatively modified LDL. It is suggested that HDL may play a protective role in atherogenesis by preventing the generation of an oxidatively modified LDL. The mechanism of action of HDL may involve exchange of lipid peroxidation products between the lipoproteins.  相似文献   

18.
19.
The oxidative modification of low-density lipoprotein (LDL) is suggested to play an important role in the pathogenesis of atherosclerosis. The present study examined the role of the formation of LDL-copper (Cu) complex in the peroxidation of LDL. The amount of copper bound to LDL increased during incubation performed with increasing concentrations of CuSO4. More than 80% of the copper bound to the LDL particle was observed in the protein phase of LDL, suggesting that most of the copper ions formed complexes with the ligand-binding sites of apoprotein. The addition of histidine (1 mM), known to form a high affinity complex with copper, and EDTA (1 mM), a metal chelator, during the incubation of LDL with CuSO4 prevented the formation of both thiobarbituric acid-reactive substances (TBARS) and LDL-Cu complexes. EDTA inhibited the copper-catalyzed ascorbate oxidation whereas histidine had no effect, suggesting that the copper within the complex with histidine is available to catalyze the reaction, in contrast to EDTA. These observations indicate that the preventive effect of histidine on the copper-catalyzed peroxidation of LDL is not simply mediated by chelating free copper ions in aqueous phase. Evidence that copper bound to LDL particle still has a redox potential was provided by the observed increase in TBARS content during incubation of LDL-Cu complexes in the absence of free copper ions. The addition of either histidine or EDTA to LDL-Cu complexes inhibited the formation of TBARS by removing copper ions from the LDL forming the corresponding complexes. However, there still remained small amounts of copper in the LDL particles following the treatment of LDL-Cu complexes with histidine or EDTA. The copper ions remaining in the LDL particle lacked the ability to catalyze LDL peroxidation, suggesting that there may be two types of copper binding sites in LDL: tight-binding sites, from which the copper ions are not removed by chelation, and weak-binding sites, from which copper ions are easily removed by chelators. The formation of TBARS in the LDL preparation during incubation with CuSO4 was comparable to the incubation with FeSO4. In contrast, the formation of TBARS in the LDL-lipid micelles by CuSO4 was nearly eliminated even in the presence of ascorbate to promote metal-catalyzed lipid peroxidation, although a marked increase in TBARS content was observed in the LDL-lipid micelles with FeSO4, and with FeCl3 in the presence of ascorbate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Previous reports proposed that peroxynitrite (ONOO-) oxidizes alpha-tocopherol (alpha-TOH) through a two-electron concerted mechanism. In contrast, ONOO- oxidizes phenols via free radicals arising from peroxo bond homolysis. To understand the kinetics and mechanism of alpha-TOH and gamma-tocopherol (gamma-TOH) oxidation in low-density lipoprotein (LDL) (direct vs. radical), we exposed LDL to ONOO- added as a bolus or an infusion. Nitric oxide (.NO), ascorbate and CO2 were used as key biologically relevant modulators of ONOO- reactivity. Although approximately 80% alpha-TOH and gamma-TOH depletion occurred within 5 min of incubation of 0.8 microM LDL with a 60 microM bolus of ONOO-, an equimolar infusion of ONOO- over 60 min caused total consumption of both antioxidants. gamma-Tocopherol was preserved relative to alpha-TOH, probably due to gamma-tocopheroxyl radical recycling by alpha-TOH. alpha-TOH oxidation in LDL was first order in ONOO- with approximately 12% of ONOO- maximally available. Physiological concentrations of.NO and ascorbate spared both alpha-TOH and gamma-TOH through independent and additive mechanisms. High concentrations of.NO and ascorbate abolished alpha-TOH and gamma-TOH oxidation. Nitric oxide protection was more efficient for alpha-TOH in LDL than for ascorbate in solution, evidencing the kinetically highly favored reaction of lipid peroxyl radicals with.NO than with alpha-TOH as assessed by computer-assisted simulations. In addition, CO2 (1.2 mM) inhibited both alpha-TOH and lipid oxidation. These results demonstrate that ONOO- induces alpha-TOH oxidation in LDL through a one-electron free radical mechanism; thus the inhibitory actions of.NO and ascorbate may determine low alpha-tocopheryl quinone accumulation in tissues despite increased ONOO- generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号