首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
Summary The ability of Safranin O, added to fixation and decalcification solutions, to prevent the escape of glycosaminoglycans (GAGs) from small cartilage tissue blocks during histological processing of cartilage has been studied. GAGs in the fixatives and decalcifying solutions used and those remaining in the 1 mm3 cubes of cartilage were assayed biochemically. The quantity of GAGs remaining in the cartilage cubes were determined from Safranin O-stained sectins using videomicroscopy or microspectrophotometry. A quantity (10.6%) of GAGs were lost during a conventional 4% buffered formaldehyde fixation (48 h) and a subsequent decalcification in 10% EDTA (12 days) at 4°C. Rougly one-quarter of the total GAG loss occurred during the 48 h fixation, and three-quarters during the 12c days of decalcification. Inclusion of 4% formaldehyde in the decalcification fluid decreased the loss of GAGs to 6.2%. The presence of 0.5% Safranin O in the fixative reduced this loss to 3.4%. When 0.5% Safranin O was included in the fixative and 4% formaldehyde in the decalcification solution, Safranin O staining of the histological sections increased on average by 13.5%. After fixation in the presence of 0.5% Safranin O, there was no difference in the staining intensities when decalcification was carried out in the presence of either Safranin O or formaldehyde, or both. It took 24 h for Safranin O to penetrate into the deep zone of articular cartilage, warranting a fixation period of at least this long. In conclusion, the addition of Safranin O to the fixative and either Safranin O or formaldehyde in the following decalcification fluid, markedly reduces the loss of GAGs from small articular cartilage explants during histological processing. However, for immunohistochemical studies, Safranin O cannot be included in the processing solutions, because it may interfere.  相似文献   

2.
Recently, an assay for quantification of glycosaminoglycans has been reported based on precipitation with Safranin O (Lammi, M. and Tammi, M. (1988) Anal. Biochem. 168, 352-357). In this procedure, the precipitate which forms when the glycosaminoglycan or proteoglycan is mixed with the Safranin O is collected with a dot-blot apparatus onto a membrane filter. The intensity of the color in the dots is measured densitometrically and is proportional to the amount of glycosaminoglycan or proteoglycan in the sample. This report describes a modification of the densitometric Safranin O assay which allows its use as a spectrophotometric assay. For this, the precipitates are solubilized in cetylpyridinium chloride and the absorbance determined for the resulting solutions. As with the densitometric method, guanidinium chloride diminishes the color intensity. However, the color is stable, even after solubilization, for at least one week. The precipitates collected from as much as 10 micrograms of material can be solubilized in as little as 100 microliters of cetylpyridinium chloride, so that increased sensitivity may be obtained if the solubilized precipitate is measured in a microcuvet. Thus, solubilization with cetylpyridinium chloride allows use of the Safranin O assay for glycosaminoglycans and proteoglycans even when a densitometer is unavailable.  相似文献   

3.
A dot blot assay for detection of low amounts of heparin and sulfated glycosaminoglycans (GAGs) is described. The detection range is between 25 ng/ml and 1000 ng/ml of heparin. The assay is based on the interference of sulfated GAGs with the binding of a synthetic ligand (described in this paper) to defined receptors like collagen type V and histones. Ligand binding to type V collagen was suppressed specifically by heparin, but not by other sulfated GAGs like heparin sulfate and chondroitin sulfate. Ligand binding to histones was suppressed most strongly by heparin, but also by chondroitin sulfate. Hyaluronic acid did not interfere.  相似文献   

4.
Glycosaminoglycans of Rat Cerebellum: II. A Developmental Study   总被引:2,自引:2,他引:0  
Total and individual glycosaminoglycans (GAGs) were determined in rat cerebellum in tissue explants at various postnatal ages. The major constituents of GAGs were chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Dermatan sulfate (DS) and keratan sulfate (KS) could not be detected and therefore each amounts to less than 5% of all GAGs at all ages studied. HA was the prominent GAG during postnatal development and only a minor constituent at adult ages, whereas CS was the predominant GAG in adulthood. HS remained relatively constant throughout development. The incorporation of [3H]glucosamine into individual GAGs was highest for HS at postnatal day 6, whereas HA showed intermediate and CS the lowest levels of incorporation during the first postnatal week. All major GAGs showed the lowest incorporation values at adult ages.  相似文献   

5.
Enzyme-linked immunosorbent assay for rat hepatic triglyceride lipase   总被引:1,自引:0,他引:1  
A noncompetitive enzyme-linked immunosorbent assay to measure rat hepatic triglyceride lipase (H-TGL) was developed. Antibodies to rat H-TGL were purified from goat antisera by immunoadsorption on an H-TGL-Sepharose 4B column. Routinely, Immulon 2 Removawell strips were coated with the purified antibody overnight at 4 degrees C. After blocking the wells with bovine serum albumin (BSA) for 2 hr at room temperature, standards (0.85 ng/ml-13.1 ng/ml) or samples were added to the wells and were incubated with the bound anti-rat H-TGL overnight at 4 degrees C. The standards and samples had been pretreated with 5-20 mM SDS for 30 min at room temperature and were then diluted so that the final SDS concentration in the assay was 1 mM or less. The pretreatment with SDS was necessary to achieve maximal immunoreactivity. The sample incubation was followed by an overnight incubation at 4 degrees C with an anti-rat H-TGL-horseradish peroxidase conjugate. Rat H-TGL was detected by the color development after the addition of 0.4 mg/ml of o-phenylenediamine in 0.01% H2O2, 0.1 M citrate phosphate, pH 5.0. A linear relationship was obtained between absorbance at 490 nm and the amount of highly purified rat H-TGL used as a standard. Inclusion of 1 M NaCl in the assay buffer (1% BSA, 0.05% Tween 20, 10 mM phosphate, pH 7.4) during the sample and conjugate incubations minimized non-specific interactions. Recoveries of purified rat H-TGL added to a rat liver perfusate sample ranged from 98.6% to 103%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at approximately 0.3 mol SDS per mol lipid and the equilibrium SDS concentration is C (sat)(D,F)approximately equal 2.2 mM +/- 0.6 mM. SDS translocation across the bilayer is slow at ambient temperature but increases at high temperatures.  相似文献   

7.
It is thought that sodium dodecyl sulfate (SDS), an anionic detergent, binds to hydrophobic moieties of peptide to destroy the conformational structure of protein. Because of this property, it is involved in many biochemical procedures such as separations of protein and proteolytic digestion. In the course of our study on a solid-phase protein assay, we found that SDS acts as an effective reagent for protein blotting onto a hydrophobic membrane of polyvinylidene difluoride with a manifold dot-blot apparatus. At least 0.1% SDS in an acid-ethanol blotting solution, while reducing the bias of pronounced interferers for protein assay to protein-membrane interaction, quantitatively retains protein on the membrane. Presumably, protein denatures by SDS to become an unfolded state and adsorbs into the membrane by hydrophobic interaction, even in the presence of excess SDS. Therefore, bolts stained with a pyrogallol red-molybdate complex (Pyromolex) reagent unreactive to the membrane allowed a precise protein determination without significant interference of materials, especially detergents in the sample solution. The filtration-blotting with SDS would be a crucial procedure for quantitative analyses such as immunoblotting in detergent-containing samples, together with the solid-phase protein assay with limited sample volumes, such as 20 microL or less.  相似文献   

8.
An enzyme-linked immunosorbent assay (ELISA) for the epidermal growth factor (EGF) receptor was developed using three different antibody preparations, one of which is commercially available. Using one of the antisera (986), the assay could detect as few as 200 × 106 receptors. This is equal to 0.332 fmol. This sensitivity means that a minimum of 100 A-431 cells (human carcinoma) or 5,000 normal cells are needed to quantitate the number of EGF receptors. Two of the antisera (986 and 451) recognized EGF receptors from placental tissue. EGF receptors from as little as 667 ng of placental membrane protein were detectable. The assay is highly species specific, with the sensitivity for the EGF receptor from different species dependent on the antiserum used. The commercial antibody, 29.1, had especially strong reactivity against pig and dog EGF receptors. An ELISA using this antibody had the capacity to detect the number of EGF receptors in 10 μg of liver membrane protein. The assay is sensitive to receptor conformation. The binding of antisera 986 and 451 to 1% sodium dodecyl sulfate (SDS)-denatured receptor was reduced. The binding of antibody 29.1 was impaired by the presence of 1% Triton X-100 but not the same levels of Tween-20 or SDS. In addition to being a sensitive technique for the quantitation of the EGF receptor, this assay is very rapid, taking a total of 4 h. The microtiter dish format also allows hundreds of samples to be assayed at once. By using the appropriate antiserum and standards, the EGF receptor can be quantitated in tissues from humans, dogs, pigs, and mice.  相似文献   

9.
This study uses histochemical methods to determine the ultrastructural distribution of specific glycosaminoglycans (GAGs) during the development of blood vessels in the chick chorioallantoic membrane (CAM) and to correlate changes in GAG composition with the significant structural events in the development of these vessels. Tissues were stained with tannic acid, ruthenium red, and high iron diamine and digested in various GAG-degrading enzymes to identify specific GAGs. The results are consistent with a role for hyaluronic acid in the formation, alignment, or migration of the capillary plexus of the CAM and a role for sulfated GAGs (heparan sulfate, chondroitin sulfate, dermatan sulfate) in the differentiation and development of arterial and venous vessels of the chorioallantoic membrane.  相似文献   

10.
Rabbit articular chondrocytes were seeded onto three-dimensional polyglycolic acid (PGA) scaffolds and placed into a closed bioreactor system. After 4 weeks of growth, meshes were examined for cartilage formation. Gross examination revealed solid, glistening material that had the appearance of cartilaginous tissue. Histologic examination revealed cell growth and deposition of extracellular matrix throughout the mesh with a less dense central core. Alcian blue and Safranin 0 staining showed deposition of glycosaminoglycans (GAGs). Immunostaining showed positive reactivity for type II collagen and chondroitin sulfate and no reactivity for type I collagen. Biochemical analysis showed collagen and GAG values to be 15% and 25% dry weight, respectively. Our results indicate that this type of system compares well with those previously described and should be useful for producing cartilage for evaluation in a clinical setting. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
BACKGROUND: Recombinant antibody fragments are valuable tools for SPR-based detection of small molecules such as illicit drugs. However, the multiple structural formats of recombinant antibody fragments are largely uncharacterised with respect to their respective performance in SPR sensing. We have expressed a model anti-M3G antibody in both scFv and chimeric Fab formats to examine its sensitivity and binding profiles in a microplate immunoassay format and Biacore. We have further examined the influence of scFv multimerisation, Fab constant region stability and SPR chip surface coating chemistry, on anti-hapten SPR assay development. RESULTS: Under optimised competition ELISA conditions, the anti-M3G scFv was found to have an IC(50) value of 30 ng/ml, while the most stable Fab construct exhibited an IC(50) value of 2.4 ng/ml. In SPR competition assay on an M3G-OVA-coated SPR chip surface, the two constructs again differed in sensitivity, with IC(50) values of 117 and 19 ng/ml for the scFv and Fab, respectively (the scFv also exhibiting poor linearity of response). However, when the SPR chip surface was directly coated with M3G, both antibody constructs exhibited good linearity of response, similar high sensitivity IC(50) values (scFv 30 ng/ml, Fab 14 ng/ml) and high reproducibility (50 effective regenerations for M3G-OVA, 200 for M3G direct). During SPR assay development it was noticed that scFv and Fab constructs gave differing off-rate profiles. Subsequent HPLC, ELISA and electrophoretic analyses then confirmed that a portion of the scFv population multimerises. Bivalent scFv was found to profoundly affect the dissociation curve for scFv in stringent SPR kinetic analyses, leading to a 40-fold difference in calculated off-rate values (Fab off rate 4.7 x 10(-3)S(-1), scFv off rate 1.03 x 10(-2)S(-1)). CONCLUSION: The structural format of recombinant antibody fragments and chip functionalisation methodology can both profoundly affect the function of anti-M3G SPR assay, with direct coating and Fab format proving to be optimal. The confirmation of scFv multimerisation and resulting changes in SPR kinetics profile, in comparison with a Fab, further suggest that caution must be taken in the interpretation of SPR sensorgrams, which are commonly used in the 'affinity ranking' of scFv panels in which the extent of dimerisation in each sample is unknown.  相似文献   

12.
Membrane-walls from Gaffkya homari require a specific interrelationship between membrane and wall that functions in the incorporation of nascent peptidoglycan into the preexisting peptidoglycan of the wall. Two different methods were used to inhibit selectively this incorporation process: (i) sensitivity to sulfhydryl reagents and (ii) heat inactivation. Of the sulfhydryl reagents tested, 2.2 mM iodoacetamide inhibited the synthesis of wall peptidoglycan 50%, whereas greater than 100 mM was required to inhibit the synthesis of sodium dodecyl sulfate (SDS)-soluble peptidoglycan. Heat treatment at 37 degrees C (t 1/2 = 5.7 min) inhibited wall peptidoglycan synthesis without affecting SDS-soluble peptidoglycan synthesis. Inhibition of LD-carboxypeptidase by iodoacetamide and heat gave 50% inhibition and t 1/2 values similar to those observed for the incorporation process. Thus, it is suggested that the LD-carboxypeptidase may be one of the enzymes responsible for the sulfhydryl sensitivity and heat lability and that this enzyme may play a role in the relationship between membrane and wall in G. homari.  相似文献   

13.
Routine isolation, estimation, and characterization of glycosaminoglycans (GAGs) is quite challenging. This is compounded by the fact that the analysis is technique-intensive and more often there will be a limitation on the quantity of GAGs available for various structural, functional and biological studies. In such a scenario, the sample which can be made available for estimation and elucidation of disaccharide composition and species composition as well remains a challenge. In the present study, we have determined the feasibility where isolated sulfated GAGs (sGAG) that is estimated by metachromasia is recovered for further analysis. sGAG-DMMB complex formed after estimation of sGAG by DMMB dye-binding assay was decomplexed and sGAGs were recovered. Recovered sGAGs were analysed by cellulose acetate membrane electrophoresis and taken up for disaccharide composition analysis by HPLC after fluorescent labelling. Good recovery of sGAGs after metachromasia was observed in all samples of varying levels of purity by this protocol. Further analysis using cellulose acetate membrane electrophoresis showed good separation between species of sGAGs namely chondroitin/dermatan sulfate and heparan sulfate, with comparatively lesser interference from hyaluronic acid, a non-sulfated GAG. Analysis of recovered sGAGs, specifically heparan sulfate by HPLC showed characteristic disaccharide composition akin to that of GAG obtained by the conventional protocol. Thus, in the present paper, we show that sGAG can be recovered in comparatively purer form after routine estimation and can be used for further analysis thus saving up on the precious sample.  相似文献   

14.
This study measures the effects of total urinary glycosaminoglycans (GAGs), glycoproteins (GPs) and individual GAGs on the nucleation rates (Bo), growth rates (G) and suspension densities (Mт) of calcium oxalate (CaOx) crystallization by the mixed suspension mixed product removal (MSMPR) system. Total urinary GAGs, glycoproteins and individual GAGs including heparan sulfate (HS), chondroitin sulfate (CS) and Hyaluronic acid (HA) were added into the artificial urine (AU) and then introduced into the MSMPR test chamber and the crystal sizes and numbers were analyzed by a particle counter. The effects of added GAGs and GPs on CaOx crystallization were reflected by the changes on the crystallization indexes including the Bo, G and Mт of CaOx that were calculated based on the crystal size and numbers. Total urinary GAGs showed no statistical significance on CaOx crystallization. However, individual GAGs such as HA, CS and HS enhanced Bo and suppressed the G when measured individually. CS and HS enhanced the Mт while HA shown no significant change in the Mт of CaOx. Total urinary GPs showed an increase in the G and Mт of crystals. Although total urinary GAGs showed no statistically significant effect on CaOx crystallization, individual GAGs (CS, HS) promoted the CaOx crystallization by increasing the suspension density of smaller crystals, indicative of reduced risk of stones while HA showed no significance in the M(T) of CaOx formed. Urinary GPs indicated increased sizes and M(T) suggesting larger crystals and/or aggregates.  相似文献   

15.
SDS-PAGE of chromatographic fractions requires prior removal of salts, detergents, denaturants, or organic solvents which may perturb the electrophoretic separation. Likewise, to successfully visualize minute amounts of protein present in chromatographic fractions, they must often be concentrated before analysis by SDS-PAGE. In this study, we used a dye precipitation procedure for simultaneous removal of interfering substances and concentration of dilute samples (ng/ml) before analysis by SDS-PAGE. Nanogram amounts of protein (143 ng) were effectively precipitated with a pyrogallol red-molybdate reagent from commonly used chromatographic buffers containing various interfering solutes or solvents. Proteins were successfully precipitated from solution in the presence of organic solvents (acetonitrile, methanol, 2-propanol), chaotropic agents (6 M urea, 6 M guanidine-HCl), a protein stabilizer (40% sucrose), metal chelators (30 mM EDTA and 30 mM EGTA), or high salt (1.0 M NaCl). Detergents, at concentrations up to twice their critical micelle concentrations, from the nonionic class (Triton X-100, Tween 20) or from the zwitterionic class (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) did not inhibit protein precipitation. Some interference was observed when proteins were precipitated in the presence of ammonium sulfate (0. 5-2.0 M). Proteins did not precipitate in the presence of ionic detergents (SDS and cetyltrimethylammonium bromide). The sensitivity of the combined pyrogallol red-molybdate precipitation/SDS-PAGE procedure is approximately 7 ng. Two other methods of precipitating proteins (trichloroacetic acid and phenol-ether) both exhibited varying degrees of effectiveness, ranging from 714 to 7 ng/ml, in the precipitation of individual proteins. In summary, the pyrogallol red-molybdate protein precipitation procedure facilitates the SDS-PAGE analysis of dilute protein samples (ng/ml) from chromatographic fractions of various compositions. The method is useful for rapid pilot-scale protein fractionation and facilitates the ongoing propensity of researchers to work with minuscule amounts of protein.  相似文献   

16.
采用酶解和离子交换色谱的方法,从兔、鸡、猪和羊肝组织中提取和纯化得到了糖胺聚糖(GAGs).通过比较透明质酸(HA)、硫酸软骨素A(CS-A)、硫酸软骨素C(CS-C)、硫酸皮肤素(DS)、肝素(HP)、硫酸乙酰肝素(HS)等标准品在醋酸钡、醋酸锌、吡啶-甲酸等几种不同缓冲体系下的醋酸纤维素薄膜电泳行为,结合灰度积分建立了适合于微量GAGs定性和定量分析的电泳方法.将从不同动物肝脏组织中提取的GAGs运用该方法进行分析,发现 不同动物肝脏组织中,GAG含量和组成均有较大差异:羊肝中GAGs含量最高(0.52 mg/g 组织干粉),种类也最丰富,含有HA、HS、DS和CS,其中HA所占比例最高;鸡肝中GAGs含量最少(0.18 mg/g组织干粉),主要含有HA和DS;兔肝GAGs种类与猪肝相似,均含有HA、HS和DS,但HS是猪肝GAGs的主要成分,DS是兔肝GAGs的主要成分.  相似文献   

17.
Several microbial pathogens have been reported to interact with glycosaminoglycans (GAGs) on cell surfaces and in the extracellular matrix. Here we demonstrate that M protein, a major surface-expressed virulence factor of the human bacterial pathogen, Streptococcus pyogenes, mediates binding to various forms of GAGs. Hence, S. pyogenes strains expressing a large number of different types of M proteins bound to dermatan sulfate (DS), highly sulfated fractions of heparan sulfate (HS) and heparin, whereas strains deficient in M protein surface expression failed to interact with these GAGs. Soluble M protein bound DS directly and could also inhibit the interaction between DS and S. pyogenes. Experiments with M protein fragments and with streptococci expressing deletion constructs of M protein, showed that determinants located in the NH2-terminal part as well as in the C-repeat region of the streptococcal proteins are required for full binding to GAGs. Treatment with ABC-chondroitinase and HS lyase that specifically remove DS and HS chains from cell surfaces, resulted in significantly reduced adhesion of S. pyogenes bacteria to human epithelial cells and skin fibroblasts. Together with the finding that exogenous DS and HS could inhibit streptococcal adhesion, these data suggest that GAGs function as receptors in M protein-mediated adhesion of S. pyogenes.  相似文献   

18.
A radioimmunoassay for the myelin-associated glycoprotein   总被引:17,自引:11,他引:6  
Abstract: The myelin-associated glycoprotein (MAG) was purified from rat brain and radioiodinated with Bolton-Hunter reagent for use in a double-antibody radioimmunoassay. The conditions of the assay were adjusted to measure between 2 and 30 ng of MAG. The antigenic sites of MAG in tissue samples were exposed by solubilization in 1% (wt/vol) sodium dodecyl sulfate (SDS), and the final assay was done in a mixture of 0.25% SDS and 0.25% Triton X-100. The presence of the Triton X-100 overcame the inhibitory effect of SDS alone on the immune reactions. Application of the assay to whole homogenates of developing rat brain revealed the expected increase of MAG with the progression of myelination. Adult brain homogenate and purified myelin contained 2.7 and 7.4 μg of MAG/mg protein, respectively. Sciatic nerve contained a lower level of MAG, and cross-reacting material was not detected in nonneural tissues. This assay makes possible for the first time the analysis of MAG in whole tissue without prior myelin isolation or glycoprotein separation.  相似文献   

19.
We show here that cell surface glycosaminoglycans (GAGs) are involved in the binding of stromal cell-derived factor (SDF)-1alpha to CD4(+)lymphoid CEM or monocytic U937 cells, inasmuch as pretreating the cells with heparitinase or chondroitinase inhibits SDF-1alpha binding by 40-41% and 31-35%, respectively. Soluble heparin or chondroitin sulfate partially but significantly inhibits SDF-1alpha binding to the cells by 45-52% and 42-56%, respectively, while dextran has no significant effect. Taken together, these results indicate the role of GAGs in SDF-1alpha attachment to the cells. However, the effects of heparitinase and chondroitinase as well as those of heparin and chondroitin sulfate are not additive, which suggests that SDF-1alpha may attach to the cells through different GAGs, and also through other ligands. Soluble mannan also inhibits SDF-1alpha binding to the cells by 30-33%. Additivity between this effect and that of heparin or chondroitin sulfate is observed. Therefore, beside GAGs, mannose-containing species may also be involved in SDF-1alpha attachment to the cells. Accordingly, SDF-1alpha specifically binds to heparin-agarose and mannose-divinylsulfone agarose affinity matrices, and these interactions are inhibited respectively by soluble heparin, chondroitin sulfate, and mannan. We have previously shown that gp120 of X4 strain HIV-1LAI presents specific carbohydrate-binding properties for mannosylated derivatives, including mannan, and for GAGs including heparin. The present data therefore indicate that, in the same manner as HIV-1 Env, SDF-1alpha can interact with GAGs and glycans at the cell surface.  相似文献   

20.
The effects of Triton X-100, sodium dodecyl sulfate (SDS), and urea on the response of Coomassie blue G to 16 different proteins and peptides of Mr 1140 to 146,000 were studied to assess the significance of protein conformation and of ionic and nonionic interactions for the dye response to individual proteins. Triton X-100 at a final concentration of 0.008% (v/v) increased the sensitivity of the Bradford assay toward all proteins of Mr 5700 or higher by an average 33%. Increases ranged from +11% with myelin basic protein to +128% with aprotinin. The relative range of absorbance of proteins and deviations from bovine serum albumin decreased by approximately 25%. Triton X-100 appears to facilitate nonionic interactions of the dye with proteins of limited capacity for ionic binding. Conformation of proteins also seemed to be of some significance because the chaotropic agent urea (0.16 M final concentration) increased sensitivity of the assay by 14%. Sensitivity of the assay was lowered by SDS (0.004% final concentration, w/v) by an average 75% from that of the control assay. The results indicate that the incorporation of low concentrations of a nonionic detergent may be useful in improving sensitivity and variability of the Bradford assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号