首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Helix-helix interactions in lipid bilayers.   总被引:1,自引:1,他引:0  
Using a continuum model, we calculated the electrostatic interaction free energy between two alpha-helices in three environments: the aqueous phase, a low dielectric alkane phase, and a simple representation of a lipid bilayer. As was found in previous work, helix-helix interactions in the aqueous phase are quite weak, because of solvent screening, and slightly repulsive, because of desolvation effects that accompany helix assembly. In contrast, the interactions can be quite strong in a hypothetical alkane phase because desolvation effects are essentially nonexistent and because helix-helix interactions are not well screened. In this type of environment, the antiparallel helix orientation is strongly favored over the parallel orientation. In previous work we found that the free energy penalty associated with burying helix termini in a bilayer is quite high, which is why the termini tend to protrude into the solvent. Under these conditions the electrostatic interaction is strongly screened by solvent; indeed, it is sufficient for the termini to protrude a few angstroms from the two surfaces of the bilayer for their interaction to diminish almost completely. The effect is consistent with the classical model of the helix dipole in which the dipole moment is represented by point charges located at either terminus. Our results suggest, in agreement with previous models, that there is no significant nonspecific driving force for helix aggregation and, hence, that membrane protein folding must be driven by specific interactions such as close packing and salt-bridge and hydrogen bond formation.  相似文献   

2.
The mutual interactions between lipids in bilayers are reviewed, including mixtures of phospholipids, and mixtures of phospholipids and cholesterol (Chol). Binary mixtures and ternary mixtures are considered, with special emphasis on membranes containing Chol, an ordered phospholipid, and a disordered phospholipid. Typically the ordered phospholipid is a sphingomyelin (SM) or a long-chain saturated phosphatidylcholine (PC), both of which have high phase transitions temperatures; the disordered phospholipid is 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) or dioleoylphosphatidylcholine (DOPC). The unlike nearest-neighbor interaction free energies (ωAB) between lipids (including Chol), obtained by an variety of unrelated methods, are typically in the range of 0-400 cal/mol in absolute value. Most are positive, meaning that the interaction is unfavorable, but some are negative, meaning it is favorable. It is of special interest that favorable interactions occur mainly between ordered phospholipids and Chol. The interpretation of domain formation in complex mixtures of Chol and phospholipids in terms of phase separation or condensed complexes is discussed in the light of the values of lipid mutual interactions.  相似文献   

3.
Hung WC  Lee MT  Chen FY  Huang HW 《Biophysical journal》2007,92(11):3960-3967
The condensing effect of cholesterol on phospholipid bilayers was systematically investigated for saturated and unsaturated chains, as a function of cholesterol concentration. X-ray lamellar diffraction was used to measure the phosphate-to-phosphate distances, PtP, across the bilayers. The measured PtP increases nonlinearly with the cholesterol concentration until it reaches a maximum. With further increase of cholesterol concentration, the PtP remains at the maximum level until the cholesterol content reaches the solubility limit. The data in all cases can be quantitatively explained with a simple model that cholesterol forms complexes with phospholipids in the bilayers. The phospholipid molecules complexed with cholesterol are lengthened and this lengthening effect extends into the uncomplexed phospholipids surrounding the cholesterol complexes. This long-range thickening effect is similar to the effect of gramicidin on the thickness of lipid bilayers due to hydrophobic matching.  相似文献   

4.
Many biological processes take place in close proximity to lipid membranes. For a detailed understanding of the underlying mechanisms, tools are needed for the quantitative characterization of such biomolecular interactions. In this work, we describe the development of methods addressing the dynamics and affinities of protein complexes attached to an artificial membrane system. A semisynthetic approach provides the Ras protein with palmitoyl anchors, which allow stable membrane insertion, as a paradigm for membrane associated proteins that interact with multiple effectors. An artificial membrane system is constituted by nanoparticles covered with a lipid bilayer. Such a stable suspension allows for the characterization of the interaction between membrane-bound Ras and effector proteins using conventional fluorescence-based methods.  相似文献   

5.
The properties of alamethicin channels in dioleyl phosphatidylcholine bilayers were studied in 1 M LaCl3 and were compared with those in 1 M NaCl. Single-channel recordings demonstrated that the mean single-channel life-time is about 0.25 s in NaCl but only about 17 ms in LaCl3. Whereas in NaCl the conductance levels 2 and 3 are mostly populated, in LaCl3 the levels 0 and 1 are preferentially adopted. The single-level conductance are slightly smaller in LaCl3 if the higher bulk solution conductivity of LaCl3 is taken into account. Multipore experiments confirmed earlier results (Boheim, G., Irmscher, G. and Jung, G. (1978) Biochim. Biophys. Acta 507, 485--506) that the bilayer conductance is less strongly dependent on voltage in LaCl3 than in NaCl solution. Current-fluctuation analysis showed that this effect can be explained by a less strong dependence on voltage of the pore-formation rate as well as of the mean channel life-time in LaCl3. The data can be interpreted as an increased lateral diffusion mobility of the alamethicin monomers in the bilayer. This can be the result of the binding of La3+ to the polar headgroups which can induce cluster formation of the phospholipids.  相似文献   

6.
Biological membranes are constantly exposed to forces. The stress-strain relation in membranes determines the behavior of many integral membrane proteins or other membrane related-proteins that show a mechanosensitive behavior. Here, we studied by force spectroscopy the behavior of supported lipid bilayers (SLBs) subjected to forces perpendicular to their plane. We measured the lipid bilayer mechanical properties and the force required for the punch-through event characteristic of atomic force spectroscopy on SLBs as a function of the interleaflet coupling. We found that for an uncoupled bilayer, the overall tip penetration occurs sequentially through the two leaflets, giving rise to two penetration events. In the case of a bilayer with coupled leaflets, penetration of the atomic force microscope tip always occurred in a single step. Considering the dependence of the jump-through force value on the tip speed, we also studied the process in the context of dynamic force spectroscopy (DFS). We performed DFS experiments by changing the temperature and cantilever spring constant, and analyzed the results in the context of the developed theories for DFS. We found that experiments performed at different temperatures and with different cantilever spring constants enabled a more effective comparison of experimental data with theory in comparison with previously published data.  相似文献   

7.
8.
The aggregation and deposition onto neuronal cells of amyloid beta-peptide (Abeta) is central to the pathogenesis of Alzheimer's disease. Accumulating evidence suggests that membranes play a catalytic role in the aggregation of Abeta. This article summarizes the structures and properties of Abeta in solution and the physicochemical interaction of Abeta with lipid bilayers of various compositions. Reasons for discrepancies between results by different research groups are discussed. The importance of ganglioside clusters in the aggregation of Abeta is emphasized. Finally, a hypothetical physicochemical cascade in the pathogenesis of the disease is proposed.  相似文献   

9.
The effect of synthetic polycations, polyallylamine, and polyethylenimine, on liposomes containing phosphatidylserine was investigated along with that of polylysine and divalent cations. The addition of polycations caused aggregation of sonicated vesicles composed of phosphatidylserine and phosphatidylcholine (molar ratio 1:4) as determined by measuring the turbidity changes. Liposomal turbidity increased 10 times compared with that of control liposomes at charge ratios of polymer/vesicle from 0.23 (polylysine) to 2.5 (linear polyethylenimine), while the turbidity was unchanged by the addition of Ca2+ or Mg2+ at charge ratios up to 500. These polycations also induced intermixing of liposomal membranes as indicated by resonance energy transfer between fluorescent lipids incorporated in lipid bilayers, without inducing drastic permeability changes as determined from the calcein release. Fifty percent intermixing of liposomes (0.05 mM as lipid concentration) was induced by these polycations at charge ratios of around 1.0. However, the highest resonance energy transfer was produced by the addition of polyallylamine, which caused multicycles of membrane intermixing between vesicles. Polycation-induced membrane intermixing and permeability changes of phosphatidylserine liposomes were also investigated. At charge ratios of around 1.0, these polymers caused resonance energy transfer of fluorescent lipids incorporated in separate vesicles; however, polyallylamine and branched polyethylenimine also caused permeability increases of liposomal membranes. Membrane intermixing and permeability changes of phosphatidylserine vesicles induced by polyallylamine were dependent on the polymer/vesicle charge ratio, and were different from those induced by Ca2+ since the latter caused half-maximal membrane intermixing or permeability change of phosphatidylserine vesicles at about 1 mM at the liposomal concentrations investigated.  相似文献   

10.
Interactions between anesthetics (lidocaine and short chain alcohols) and lipid membranes formed by dimyristoylphosphatidylcholine (DMPC) were studied using NMR spectroscopy. The orientational order of lidocaine was investigated using deuterium NMR on a selectively labelled compound whereas segmental ordering in the lipids was probed by two-dimensional 1H-13C separated local field experiments under magic-angle spinning conditions. In addition, trajectories generated in molecular dynamics (MD) computer simulations were used for interpretation of the experimental results. Separate simulations were carried out with charged and uncharged lidocaine molecules. Reasonable agreement between experimental dipolar interactions and the calculated counterparts was observed. Our results clearly show that charged lidocaine affects significantly the lipid headgroup. In particular the ordering of the lipids is increased accompanied by drastic changes in the orientation of the P-N vector in the choline group.  相似文献   

11.
12.
Interactions between lipid bilayers are critical in many biological processes in which membrane surfaces come close together. Recent X-ray diffraction analyses of bilayers subjected to known osmotic pressures have provided critical information on the magnitude of both the repulsive and the attractive forces that exist between phospholipid and glycolipid membranes.  相似文献   

13.
14.
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.  相似文献   

15.
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.  相似文献   

16.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3883-3888
The process of transfer of vitamin A alcohol (retinol) between unilamellar vesicles of phosphatidylcholine was studied. The transfer was found to proceed spontaneously by hydration from the bilayer and diffusion through the aqueous phase. The rate-limiting step for transfer was the dissociation from the bilayer, a step that was characterized in bilayers of egg phosphatidylcholine (PC) by a rate constant koff = 0.64 s-1. The rate constant for association of retinol with bilayers of egg PC was also determined: kon = 2.9 x 10(6) s-1. The relative avidities for retinol of vesicles comprised of PC lipids with the various fatty acyl chains were measured. It was found that the binding affinity was determined by the composition of the lipids, such that PC with symmetric acyl chains had a lower affinity for retinol vs those with mixed chains. To clarify the mechanism underlying this observation, the rates of dissociation and association of retinol bound to vesicles of dioleoyl-PC were determined. The rate of association of retinol with bilayers strongly depended on the composition of the fatty acyl chains of the lipids. The rate of dissociation of retinol from the bilayers of PC was found to be independent of that composition. The implications of the observations for the interactions of hydrophobic ligands with lipid bilayers are discussed.  相似文献   

17.
Summary Proteolipids extracted from bovine kidney plasma membrane induce irreversible changes in the electrical properties of lipid bilayers formed from diphytanoyl phosphatidylcholine. The interaction with the proteolipid produces channels which are cation selective. At low protein concentrations (i.e., <0.6 g/ml), the single-channel conductance is approximately 10 pS in 100mm KCl and 3 pS in 100mm NaCl. In the presence of protein concentrations above 1 g/ml, another population of channels appears. These channels have a conductance of about 100 pS in 100mm KCl and 30 pS in 100mm NaCl. Further, these channels are voltage dependent in KCl, closing when the voltage is clamped at values 30 mV. The steady-state membrane conductance, measured at low voltages, was found to increase proportional to a high power (2–3) of the proteolipid concentration present in one of the aqueous phases. In 100mm NaCl, the conductance increases at protein concentrations above 5 g/ml, whereas in 100mm KCl in increases at protein concentrations above 0.6 g/ml. These measurements indicate that the higher steady-state conductance observed in KCl at a given proteolipid concentration in a multi-channel membrane presumably results because more channels incorporate in the presence of KCl than in the presence of NaCl.The two major fractions which comprise the proteolipid complex were also tested on bilayers. It was found that both fractions are required to produce the effects described.  相似文献   

18.
The effect of salt on the binding of the antimicrobial peptide magainin to POPC lipid bilayers is studied by 40-50 ns molecular dynamics simulations of a POPC bilayer in the presence of different concentrations of Na+ and Cl− ions, corresponding to effective concentrations of 0, 100, 150, 200, 250 and 300 millimolar NaCl, with and without a single molecule of antimicrobial peptide magainin. Simulations without magainin showed that increasing salt concentration leads to the decrease in the area per lipid, a decrease in the head group tilt of the lipids, as well as increased order of lipid tails, in agreement with other recent simulations. Simulations with magainin show that peptide binding to the lipids is stronger at lower concentrations of salt. The peptides disorder the lipids in their immediate vicinity, but this effect is diminished as the salt concentration increases. Our studies indicate that while 50 ns simulations give information on peptide hydrogen bonding and lipid tail ordering that is insensitive to the initial peptide orientation, this run time is not sufficient to equilibrate the peptide position and orientation within the bilayer.  相似文献   

19.
The effect of salt on the binding of the antimicrobial peptide magainin to POPC lipid bilayers is studied by 40-50 ns molecular dynamics simulations of a POPC bilayer in the presence of different concentrations of Na+ and Cl- ions, corresponding to effective concentrations of 0, 100, 150, 200, 250 and 300 millimolar NaCl, with and without a single molecule of antimicrobial peptide magainin. Simulations without magainin showed that increasing salt concentration leads to the decrease in the area per lipid, a decrease in the head group tilt of the lipids, as well as increased order of lipid tails, in agreement with other recent simulations. Simulations with magainin show that peptide binding to the lipids is stronger at lower concentrations of salt. The peptides disorder the lipids in their immediate vicinity, but this effect is diminished as the salt concentration increases. Our studies indicate that while 50 ns simulations give information on peptide hydrogen bonding and lipid tail ordering that is insensitive to the initial peptide orientation, this run time is not sufficient to equilibrate the peptide position and orientation within the bilayer.  相似文献   

20.
The product, Doα, of the oxygen diffusion coefficient, Do, and the oxygen solubility, α, is determined in phosphatidylcholine bilayers at temperatures above the lipid phase transitions from ESR spin-exchange measurements. The resulting values of Doα are in good agreement with those obtained from fluorescence-quenching experiments. The use of fatty acid spin labels makes it possible to measure Doα as a function of the coordinate perpendicular to the bilayer surface. The results indicate that Doα is a strong function of this coordinate; it is greatest in the bilayer center and least near the bilayer head groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号