首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Signature lipids from the phospholipid esterlinked fatty acids (PELFA) of cell membranes were used to describe benthic microbial communities of 4 Antarctic sediments. Metabolic activities of the communities were determined by incorporation of [3H]thymidine into bacterial DNA and sodium [14C]acetate into membrane lipids. Biomass measurements from extractable phospholipid fatty acids per g dry wt. ranged between 6 to 76 nmol, or when converted to number of bacteria, 3.7 × 108 to 4.5 × 109 cells per g dry wt. The West Sound site at New Harbor contained the lowest biomass, while Cape Evans on the East Sound contained the greatest. A marked difference was also noted between sites in their sediment microbial community structure. The East Sound sites at Cape Armitage and Cape Evans contained a greater abundance of diatom marker lipids, whilst both sides of the Sound contained approximately the same relative amounts of bacterial groups distinguished using PELFA. Activity of sediment microorganisms measured by radiolabel incorporation under ambient conditions followed the trends of the biomass measurements. The East Sound sites were more active by an average of 45–73% for [3H]thymidine and possibly also for sodium [14C]acetate.  相似文献   

2.
The summer Phaeocystis antarctica bloom increases under-ice phytoplankton biomass in McMurdo Sound, Antarctica. The magnitude of mesozooplankton grazing on this bloom is unknown, and determines whether this production is available to the pelagic food web. We measured mesozooplankton abundance and body content of dimethylsulfoniopropionate (DMSP) during the McMurdo Sound austral summer (2006 and 2006–2007). Abundance varied from 20 to 4,500 ind. m−3 (biomass 0.02–274.0 mg C m−3), with peaks in mid-December and late-January/February. Abundance was higher but total zooplankton biomass lower in our study compared to previous reports. Copepods and the pteropod Limacina helicina dominated the zooplankton in both abundance and biomass. DMSP was detected in all zooplankton groups, with highest concentrations in copepod nauplii and L. helicina (95 and 54 nmol mg−1 body C, respectively). Experiments suggested that L. helicina obtains DMSP by directly grazing on P. antarctica, which often accumulates to high biomass under the summer sea ice in McMurdo Sound.  相似文献   

3.
A towed benthic camera system captured images of a ca. 66-cm-long Antarctic toothfish partially under a boulder at 76°30'S, 174°59'E (depth 454 m) in the southern Ross Sea. This is noteworthy because, excluding McMurdo Sound, there are only two published records for this species in the Ross Sea and none in an offshore locality. Adult Dissostichus mawsoni are neutrally buoyant and live and feed in the lower reaches of the water column. Benthic perching is unexpected, suggesting that this subadult is not neutrally buoyant.  相似文献   

4.
Summary The triacylglycerol fatty acid and sterol profiles of microorganisms from three McMurdo Sound sediment sites, collected during the austral summer of 1984–1985, were determined using gas chromatography and gas chromatography-mass spectrometry. Comparison of the three sites indicated that Cape Evans contained the greatest concentration of triacylglycerol (TG) (220 nmoles/gram dry weight (gdw) of sediment), approximately six to seven times that determined for sediment microorganisms from the Cape Armitage and New Harbor sites. The relative proportion of triacylglycerolderived polyunsaturated fatty acids (PUFA) revealed a somewhat different trend. New Harbor sediment contained the greatest relative proportion of PUFA (22% of triacylglycerol fatty acids), followed by Cape Evans (16%) and Cape Armitage (11%). The proportion of unsaturated fatty acids (poly-and monounsaturated) was relatively constant and ranged from 63% to 71% of the triacylglycerol fatty acids for the three sites. Sterol concentrations varied from 610 pmoles/gdw at Cape Evans, to 370 and 240 pmoles/gdw for Cape Armitage and New Harbor respectively, and was approximately 1% of the total determined lipid. Cholesterol was the major sterol component detected, occurring at similar relative levels (29%) for all three sites. Other sterols present in decreasing order of abundance were 22-dehydrocholesterol, brassicasterol, 24-ethylcholesterol and 24-methylcholesterol. 5-stanols were only minor components of the three sediments, indicating that in situ biohydrogenation of stenols was not a major sterol transformation process in these recent surface oxic sediments.Part 3 in the series: Microbial Ecology in Antarctic Sea-Ice and Benthic Communities  相似文献   

5.
An abundant and diverse bacterial community was found within brine channels of annual sea ice and at the ice-seawater interface in McMurdo Sound, Antarctica, in 1980. The mean bacterial standing crop was 1.4 × 1011 cells m−2 (9.8 mg of C m−2); bacterial concentrations as high as 1.02 × 1012 cells m−3 were observed in ice core melt water. Vertical profiles of ice cores 1.3 to 2.5 m long showed that 47% of the bacterial numbers and 93% of the bacterial biomass were located in the bottom 20 cm of sea ice. Ice bacterial biomass concentration was more than 10 times higher than bacterioplankton from the water column. Scanning electron micrographs showed a variety of morphologically distinct cell types, including coccoid, rod, fusiform, filamentous, and prosthecate forms; dividing cells were commonly observed. Approximately 70% of the ice bacteria were free-living, whereas 30% were attached to either living algal cells or detritus. Interactions between ice bacteria and microalgae were suggested by a positive correlation between bacterial numbers and chlorophyll a content of the ice. Scanning and transmission electron microscopy revealed a close physical association between epibacteria and a dominant ice alga of the genus Amphiprora. We propose that sea ice microbial communities are not only sources of primary production but also sources of secondary microbial production in polar ecosystems. Furthermore, we propose that a detrital food web may be associated with polar sea ice.  相似文献   

6.
J. P. Barry 《Polar Biology》1988,8(5):377-391
Summary Measurements of hydrographic parameters (temperature, salinity, nitrate, nitrite, phosphate, chlorophyll a, phaeophytin, and oxygen) in McMurdo Sound, Antarctica during spring, 1984, before the regional phytoplankton bloom, and summer, 1984, after the peak of the bloom, indicate the several processes contribute to changes in the vertical and horizontal structure of the water column. Regional variation in the source of water masses within the Sound, ice cover patterns, and meltwater from the Ross Ice Shelf and nearby continental glaciers result in east-west and north-south gradients in the thermohaline, nutrient, and productivity characteristics of the Sound. These patterns are also related to the extremely variable structure and productivity of shallow water benthic macrofaunal communities in McMurdo Sound. Hydrographic patterns during Spring (November) were indicative of conditions at the end of winter prior to the spring phytoplankton bloom. The water column was nearly isothermal with temperatures near or below the surface freezing point of seawater with only a slight salinity increase with depth. Salinity was lower in the west Sound than in the east, probably in response to glacial meltwater input from the Ross Ice Shelf and/or terrestrial sources. Nutrient levels were high and nearly homogenous throughout the Sound. Chlorophyll a was low (<1.0 g/l) throughout most of the Sound, but was lowest in the western sound, as expected from the circulation pattern (Barry and Dayton 1988). Oxygen was uniformly low during spring. The summer hydrographic distributions, estimated from samples collected during the decline of the regional plankton bloom, were dramatically different than in during spring. Both the salinity and temperature were vertically stratified at all sites, particularly in the west Sound. Temperatures near the surface were well above the freezing point and occasionally near or above 0°C. Near surface salinity in the western Sound was nearly fresh (0.4 ppt) at some locations in the southwestern Sound. Chlorophyll a was high throughout the Sound relative to spring concentrations, and nutrient levels (NO3, PO4) were strongly depressed near the surface, due mainly to phytoplankton uptake rather than by dilution. Primary productivity estimates based on the summer nitrate and phosphate deficits over 90 days were 1.96–2.02 and 0.39–1.02 gCm-2d-1 for the east and west sound, respectively. Nutrient ratios indicated that glacial meltwater from the Ross Ice Shelf and/or nearby terrestrial sources may be an important component of the summer meltwater input to the western Sound. Enhanced water column stability due to this input may prolong the maintenance of high water column stability as this water mass flows northward and result in particularly high productivity in northern McMurdo Sound.  相似文献   

7.
Numbers of bacteria in annual sea ice increased directly with numbers of algae during the 1981 spring ice diatom bloom in McMurdo Sound, Antarctica. Algae and bacteria in a control site grew at rates of 0.10 and 0.05 day–1, respectively, whereas in an experimentally darkened area neither increased after six weeks. Epiphytic bacteria grew at a rate twice that of the nonattached bacteria and were significantly larger, contributing approximately 30% of the total bacterial biomass after October. The microalgal assemblage was dominated by two species of pennate diatoms, anAmphiprora sp. andNitzschia stellata. Greater than 65% of epiphytic bacteria were associated withAmphiprora sp. after October.N. stellata, however, remained largely uncolonized throughout the study. We hypothesize that microalgae stimulate bacterial growth in sea ice, possibly by providing the bacteria with organic substrates.  相似文献   

8.
Along the Victoria Land Coast, the population structure of the Antarctic scallop (Adamussium colbecki) was studied in McMurdo Sound (New Harbor), Terra Nova Bay, and Wood Bay, on a latitudinal span of 3 degrees. At a large spatial scale, most relevant differences between the scallop populations are linked to their depth distributions. The McMurdo and Wood Bay populations show a shallower bathymetric distribution with maximum abundance between 5 and 15 m depth. In contrast, inside Terra Nova Bay, at sites with similar near-shore bathymetric profiles, the maximum biomass is found between 40 and 70 m. This difference can be related to the different ice-cover persistency characterising these two areas, being less at Terra Nova Bay than in the other localities. Differences arise also in the reproductive period: at McMurdo, it seems to occur early in the austral spring, while at Terra Nova Bay, mature females are observed at the beginning of February. Also at a small scale, in sites only a few miles from each other, the population structures inside Terra Nova Bay and Wood Bay vary in terms of abundance and size frequency distribution, suggesting various environmental and biological constraints. Among environmental factors, bottom features (slope, sediment grain size, organic content) and water-column food supply during the summer months may be considered. In addition, as Adamussium is preyed upon by starfishes and fishes, its abundance and population structure may be affected by predators and their abundance. Accepted: 7 August 2000  相似文献   

9.
 The zooplankton of the under-shelf-ice ecosystem at White Island (78°10′ S, 167°30′ E), McMurdo Sound, Antarctica was investigated during December 1976 and January 1977. The water column was sampled through a hole in the McMurdo Ice Shelf over a water depth of 67 m. Seawater temperatures under the ice shelf ranged from −1.91 to 1.96°C. Dissolved oxygen levels ranged from 5.0–6.05 ml l-1 in early December to 4.65–4.8 ml l-1 in late January. Current speeds of up to 0.13 m s-1 were recorded at a depth of 50 m and a predominantly northward flow was detected. Light levels under the shelf ice were low with less than 1% of the incident light being transmitted to a depth of 3 m. No chlorophyll a was detected within the water column throughout the investigation. Mean zooplankton biomass values in the water column ranged from 12 to 447 mg wet weight m-3 and were similar to values recorded elsewhere from Antarctic inshore waters, but were very much higher than those recorded from under seasonal sea ice in McMurdo Sound. Thirty-two zooplankton species were recorded including 1 ostracod, 21 copepods (10 calanoids, 3 cyclopoids and 8 harpacticoids), 4 amphipods, 2 euphausiids, a chaetognath and 3 pteropods. Larvae of polychaetes and fish were found on some occasions. The species composition in general was similar to that recorded from McMurdo Sound and other Antarctic inshore localities. Among the Copepoda, however, there were a number of species, especially among the Harpacticoidea, that have not been found previously in McMurdo Sound and the Ross Sea, but that are known to be associated with ice in other localities in Antarctica. Two recently described species are known only from White Island. They were present in the water column but were most abundant in the surface water of the tide crack where they were the most abundant zooplankters. The tide crack, which probably is an extension of the under-ice habitat, is apparently a significant nursery area for amphipods and copepod species. Received: 23 November 1994/Accepted 7 May 1995  相似文献   

10.
1. Temporal and spatial variation in planktonic abundance, biomass and composition were determined in Lake Hoare (McMurdo Dry Valleys, Antarctica) over two summer seasons (1996–97 and 1997–98). 2. Phototrophic nanoflagellates (PNAN) dominated planktonic biomass, with a mean monthly biomass ranging between 27.3 and 40.4 μg C L?1. The deep chlorophyll maximum was mainly composed of cryptophytes (>87% of total PNAN biomass) and varied in depth between 6 and 12 m. 3. Maximum bacterial concentration was 11.8 × 105 cells mL?1. Bacterial abundance showed relatively little temporal variation, with the exception of a drop in numbers that occurred in late November of both years studied. 4. Ciliates were the most successful heterotrophic protozoan group, with a mean monthly biomass (1.2–3.2 μg C L?1) being typically at least double that of heterotrophic nanoflagellate (HNAN) biomass (0.1–0.7 μg C L?1). 5. Microbial processes within this lake appear to be dominated by bottom up control. The relative importance of allochthonous inputs into the lake (from the ice‐cover and stream flow) and autochthonous recycling (by microzooplankton regeneration) are considered. 6. Results from a horizontal transect indicate that the permanence of the main sample hole may have enhanced planktonic biomass over a relatively small spatial scale.  相似文献   

11.
 Biomass, production and heterotrophic activity of bacterioplankton were determined for two weeks in the Great Astrolabe Reef lagoon, Fiji. Bacterial and Bacterial activities were distributed homogeneously throughout the water column (20 to 40 m deep) and varied little from site to site inside the lagoon. Bacterioplankton biomass and production also varied little over a diel period with coefficients of variation of 9 and 22%, respectively. On average, over the whole study, bacterial abundance was 0.77×109 cells l-1 and bacterial production averaged 0.36 μg-at. C l-1 d-1. Bacterial abundance and production were greater in the lagoon than in oceanic waters. Attachment to particles seems to provide an advantage for bacterioplankton growth because specific growth rates for attached bacterioplankton were, on average, significantly greater than that of the free community. Growth efficiency, determined by correlating the net increase of bacterial biomass and the net decrease of dissolved organic carbon (DOC) in dilution cultures, was very low (average 6.6%). Using carbon growth efficiency and bacterial production rates, heterotrophic activity was estimated to average 5.4 μg-at. C l-1 d-1. The turn-over rate of DOC (average 114 μg-at. C l-1) due to bacterial consumption was estimated to be 0.048 d-1 during the period of study. Accepted: 25 July 1998  相似文献   

12.
Benthic bacterial biomass and production in the Hudson River estuary   总被引:2,自引:0,他引:2  
Bacterial biomass, production, and turnover were determined for two freshwater marsh sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl-3H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8–2.8 mg C·m–2·hour–1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl-3H]thymidine into DNA. Despite differences in dominant vegetation and tidal regime, bacterial biomass was similar (1×103±0.08 mg C·m–2) inTrapa, Typha, andNuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated withScirpus communities along the Hudson River (0.2×103±0.05 mg C·m–2 and 0.3±0.23 mg C·m–2·hour–1, respectively).  相似文献   

13.
The relationships between the biochemical composition of sediment organic matter and bacteria and microphytobenthic biomass distribution, were investigated along the coast of Northern Tuscany (Tyrrhenian Sea). Organic matter appeared to be of highly refractory composition. Among the three main biochemical classes, proteins were the major component (0.96 mg g-1 sediment d.w.) followed by total carbohydrates (0.81 mg g-1 sediment d.w.) and lipids (8.1 µg g-1 sediment d.w.). Bacterial number in surface sediments (0–2 cm) ranged from 1.7 to 24.5 × 108 cells g-1 of sediment dry weight showing a strong decrease with sediment depth. In surface sediments, significant correlations were found between bacterial biomass and protein concentration. Bacterial activity (measured by the frequency of dividing cells) was significantly related to lipid concentration. Bacterial and microphytobenthic biomass accounted for 3.1 and 18.1% respectively of the sediment organic carbon. In surface sediments bacterial lipids accounted, on average, for 27 % of total lipids, whereas bacterial proteins and carbohydrates accounted for 2.5 and 0.5% of total proteins and carbohydrates, respectively.The benthic degradation process indicated that lipids were a highly degradable compound (about 35% in the top 10 cm). Carbohydrate decreased for 25.6% in the top 10 cm, whereas proteins increased with depth, thus indicating that this compound may resist to diagenetic decomposition.These data suggest that specific organic compounds need to be measured rather than bulk carbon and nitrogen measurements in order to relate microbial biomass to the quality of organic matter.  相似文献   

14.
Bacterial populations were sampled at 37 sites in Mississippi River Pool 19. Bacterial biomass was calculated from direct epifluorescent cell counts. Bacterial production was estimated by incubating cells in situ in predator-free water inside membrane chambers and the frequency of dividing cells. Bacterial biomass in the water column ranged from 0.05 to 1.13 mg C -1, biomass in the vegetated areas of the pool was significantly higher than that in other habitats (P < 0.05, ANOVA). Biomass in sediments (to a depth of 10 cm) ranged from 24 to 1,073 mg C m-2, biomass in muddy sediments was significantly higher (P < 0.05) than that in sandy sediments. Biomass on the submersed surfaces of hydrophytes was 0.06–4.90 mg bacterial C g-1 dry weight of plant material. The vegetated habitat (water column plus vegetation) contained approximately 45 times the concentration of bacterial carbon found in nonvegetated main channel border areas and more than 100 times the concentration in the main river channel.Bacterial production rates in the water column of a vegetated section of the pool ranged from 0.03 to 3.28 g C m -3 s d -1 ; production (m -3) in a vegetation bed was 5.5 times that in the adjacent nonvegetated channel border areas and approximately 50 times that in the main channel. Aquatic macrophytes and associated microorganisms may be capable of providing significant inputs of carbon to secondary consumers in the pool during the summer low flow.  相似文献   

15.
Epilithic bacterial community viability was assessed on natural biofilm assemblages from environmentally contrasting locations over a 17-months period to determine if it reflects environmental conditions or conditions within the biofilm assemblage. Vital state was assessed by membrane integrity using LIVE/DEAD® BacLight? staining kit. Samples were regularly collected in a large river, up and downstream of a large urban centre. Epilithic biomasses were similar between sites irrespective of the distinct water quality but varied temporarily, peaking up to 48 g AFDM m?2. Bacterial community composition assessed by 16S rDNA based PCR-DGGE significantly differed between sites. Bacterial densities (median of 2.5 × 1011 cell g AFDM?1) were stable whatever the sample origin or biomass. Viable bacterial fractions ranged between 13 and 83% of the total bacterial densities and were correlated with hydrological stability indicators (average of 41.9% during stable water periods, 62.4% during intermediate flow regimes and 50.0% during flow instability) and seasonal parameters. At the river section and epilithic community scales, consistent bacterial densities per unit of biomass could reflect a biofilm assemblage carrying capacity while variable membrane integrity likely integrates changes in the vital state of the community under changing environmental conditions.  相似文献   

16.
Abstract Research of the microbial ecology of McMurdo Dry Valley lakes has concentrated primarily on phototrophs; relatively little is known about the heterotrophic bacterioplankton. Bacteria represent a substantial proportion of water column biomass in these lakes, comprising 30 to 60% of total microplankton biomass. Bacterial production and cell numbers were measured 3 to 5 times, within four Antarctic seasons (October to January), in Lakes Fryxell, Hoare, and Bonney. The winter-spring transition (September to October) was included during one year. Lake Fryxell was the most productive, but variable, lake, followed by Lakes Bonney and Hoare. Bacterial production ranged from 0 to 0.009 μg C ml-1 d-1; bacterial populations ranged from 3.2 x 10(4) to 4.4 x 10(7) cells ml-1. Bacterial production was always greatest just below the ice cover at the beginning of the season. A second maximum developed just above the chemocline of all the lakes, as the season progressed. Total bacterioplankton biomass in the lakes decreased as much as 88% between successive sampling dates in the summer, as evidenced by areal integration of bacterial populations; the largest decreases in biomass typically occurred in mid-December. A forward difference model of bacterial loss in the trophogenic zone and the entire water column of these lakes showed that loss rates in the summer reached 6.3 x 10(14) cells m-2 d-1 and 4.16 x 10(12) cells m-2 d-1, respectively. These results imply that bacteria may be a source of carbon to higher trophic levels in these lakes, through grazing.  相似文献   

17.
Summary The distribution and scavenging habits of the two most abundant lysianassid amphipods in McMurdo Sound differ markedly. Orchomene plebs lives primarily in deep water (>100 m), where planktonic and benthic food is sparser and scavenging events are less common and predictable than in shallower water. Orchomene plebs is common in shallow areas (<100 m) only under the Ross Ice Shelf and along the western McMurdo Sound. Here Weddell seals frequent tidal cracks in which they discard carrion and defecate; otherwise food is scarce. Orchomene pinguides lives on shallow (<10 m) wave-cut benches that are rich in food along the eastern McMurdo Sound. They, along with other omnivorous invertebrates which scavenge the food-rich eastern sound benches, are rare from shallow water along the western sound. The eastern benches are bathed by dense plankton blooms and harbor a high biomass of benthic diatoms and invertebrates. Scavenging events there were observed throughout the year. Orchomene plebs is larger and more motile, and came to laboratory carrion and baited field traps more rapidly and in greater numbers than O. pinguides. The crop contents of O. plebs contained only amorphous organic matter that suggested a scavenging habit. Crops of O. pinguides contained not only amorphous organic matter but also invertebrate prey, especially planktonic copepods that impact the bottom during winter.  相似文献   

18.
On 28 January 1989 the Bahia Paraiso ran aground and sank near Palmer Station, Antarctica. At least 6.8 × 105 liters of diesel fuel arctic (DFA) were released into semi-enclosed Arthur Harbor and deposited in the nearby intertidal regions. Approximately 6 weeks later, a group of scientists was deployed to evaluate the impact of the oil spill on the surrounding coastal marine ecosystem.Microbial hydrocarbon oxidation potential (14CO2 evolved from 14C-labeled hexadecane) was detected throughout both the oil-impacted and control regions. Hexadecane was mineralized at extremely low rates (0.13–1.21 pmol g–1 sediment dry weight day–1); microbiological turnover time exceeded 2 years. The acute effects of DFA (measured over exposure periods of 3–7 days) on the metabolic activities of sedimentary microorganisms appear to be negligible even at seawater saturation concentrations of DFA. Long-term exposure (120 days) to varying concentrations of DFA resulted in significant decreases (>90%) in total ATP, but had either no effect or a slight stimulatory effect on metabolic activity and production. In contrast to planktonic microbial communities, increasing incubation temperatures of between 0 and 30°C had a positive effect on rates of metabolism and production of sedimentary assemblages. These results may influence the overall weathering rates of hydrocarbons deposited in the intertidal and supratidal regions of Arthur Harbor and other polar regions.  相似文献   

19.
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near‐shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007–2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13C and δ15N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10–20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass‐balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near‐shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008–2009) and years with extensive sea ice breakout (2012–2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near‐shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.  相似文献   

20.
Daily bacterial abundance and production, heterotrophic nanoflagellates (HNAN) abundance, chlorophyll, and NH4 + concentrations were measured in four indoor 400-liter tanks over 13 days to study the role of heterotrophic bacterioplankton in NH4 - cycling and to identify the succession of top-down and bottom-up processes in regulating bacterial biomass and production. Ammonium (NH4 +) was added to these four tanks daily whenever its concentration in tanks was < 4 m. Tanks 3 and 4 (treatment tanks) also received 4 m of glucose daily till the end of experiment. Lower NH4 - concentrations and higher bacterial specific growth rate and production observed in the treatment tanks indicated that bacteria might take up NH4+ with the addition of labile organic carbon. Bacterial biomass was controlled by substrate supply and HNAN grazing from day 7 to day 13, when phytoplankton declined. Bacterial size distribution patterns were determined primarily by substrate supply, with HNAN grazing playing a less important role. Certain variabilities existed between the control (and the treatment) tanks. These inconsistencies could be due to differences in time of expression of given variables. However, the total amounts of bacterial biomass accumulated in the four tanks were very similar. The inconsistency in timing of expression of variables was probably due to different initial conditions in each tank. The ecological meanings of the inconsistency in timing and overall consistency were discussed. Correspondence to: F.-K. Shiah  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号