首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for the production of singlet molecular oxygen (1O2) during the chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide has been obtained through the use of optical spectroscopy, oxygen electrode experiments, and electron spin resonance (ESR). ESR spin-trapping experiments with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrate the production of the ethyl peroxyl free radical during the chloroperoxidase/ethyl hydroperoxide reaction. Oxygen and acetaldehyde concentrations suggest that the production of ethyl peroxyl radicals constitutes less than 2% of the decomposition of ethyl hydroperoxide at the concentrations of reactants used. The phosphorescence of 1O2 at 1268 nm was observed during the chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide in deuterium oxide buffer. Chloroperoxidase also catalyzes the decomposition of tert-butyl hydroperoxide to its corresponding peroxyl radical. Alkoxyl and alkyl-DMPO spin adducts were also detected. A much lower yield of 1O2 phosphorescence was observed during the chloroperoxidase-catalyzed decomposition of tert-butyl hydroperoxide. This phosphorescence probably arises through secondary production of alkyl peroxyl radicals. These results suggest that the initial enzyme-dependent production of ethyl peroxyl radicals is followed by enzyme-independent reaction of two peroxyl radicals through the tetroxide intermediate, as originally proposed by Russell (Russell, G. A. (1957) J. Am. Chem. Soc. 79, 3871-3877), to form acetaldehyde, ethyl alcohol, and molecular oxygen.  相似文献   

2.
The organic hydroperoxides tert-butyl hydroperoxide and cumene hydroperoxide are tumor promoters in the skin of SENCAR mice, and this activity is presumed to be mediated through the activation of the hydroperoxides to free radical species. In this study we have assessed the generation of free radicals from organic hydroperoxides in the target cell (the murine basal keratinocyte) using electron spin resonance. Incubation of primary isolates of keratinocytes from SENCAR mice in the presence of spin traps (5,5-dimethyl-1-pyrroline N-oxide or 2-methyl-2-nitrosopropane) and either tert-butyl hydroperoxide or cumene hydroperoxide resulted in the generation and detection of radical adducts of these spin traps. tert-Butyl alkoxyl and alkyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were detected shortly after addition of tert-butyl hydroperoxide, whereas only alkyl radical adducts were observed with cumene hydroperoxide. Spin trapping of the alkyl radicals with 2-methyl-2-nitrosopropane led to the identification of methyl and ethyl radical adducts following both tert-butyl hydroperoxide and cumene hydroperoxide exposures. Prior heating of the cells to 100 degrees C for 30 min prevented radical formation. The radical generating capacity of subcellular fractions of these epidermal cells was examined using 5,5-dimethyl-1-pyrroline N-oxide and cumene hydroperoxide, and this activity was confined to the 105,000 X g supernatant fraction.  相似文献   

3.
Direct and spin-trapping electron spin resonance methods have been used to study the reactivity of semiquinone radicals from the anthracycline antibiotics daunorubicin and adriamycin towards peroxides (hydrogen peroxide, t-butyl hydroperoxide and cumene hydroperoxide). Semiquinone radicals were generated by one-electron reduction of anthracyclines, using xanthine/xanthine oxidase. It is shown that the semiquinones are effective reducing agents for all the peroxides. From spin-trapping experiments it is inferred that the radical product is either OH (from H2O2) or an alkoxyl radical (from the hydroperoxides) which undergoes beta-scission to give the methyl radical. The rate constant for reaction of semiquinone with H2O2 is estimated to be approx. 10(4)-10(5) M-1 X s-1. The reduction does not appear to require catalysis by metal ions.  相似文献   

4.
The effect of iron dinitrosyl complexes, S-nitrosoglutathione, and glutathione on free radical oxidation of rat heart mitochondria induced by tert-butyl hydroperoxide and metmyoglobin or their combination with ferritin was studied. It was shown that iron dinitrosyl complexes or the combination of S-nitrosoglutathione and glutathione inhibited most effectively the peroxidation of mitochondrial membranes. It was found that ferritin stimulated the prooxidant action of metmyoglobin. Using EPR spectroscopy, it was established that, in conditions of O2*- generation, the destruction of iron dinitrosyl complexes took place. Iron dinitrosyl complexes also inhibited the formation of thiyl radicals, which appeared during O2*- generation in the system containing glutathione and S-nitrosoglutathione. It is essential that the formation of iron dinitrosyl complexes in this reaction system took place with the involvement of ferritin. It was proposed that the prooxidant action of ferritin and myoglobin could be inverted to the antioxidant one.  相似文献   

5.
The decomposition of organic hydroperoxides as catalyzed by chloroperoxidase was investigated with electron spin resonance (ESR) spectroscopy. Tertiary peroxyl radicals were directly detected by ESR from incubations of tert-butyl hydroperoxide or cumene hydroperoxide with chloroperoxidase at pH 6.4. Peroxyl, alkoxyl, and carbon-centered free radicals from tertiary hydroperoxide/chloroperoxidase systems were successfully trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide, whereas alkoxyl radicals were not detected in the ethyl hydroperoxide/chloroperoxidase system. The carbon-centered free radicals were further characterized by spin-trapping studies with tert-nitrosobutane. Oxygen evolution measured by a Clark oxygen electrode was detected for all the hydroperoxide/chloroperoxidase systems. The classical peroxidase mechanism is proposed to describe the formation of peroxyl radicals. In the case of tertiary peroxyl radicals, their subsequent self-reactions result in the formation of alkoxyl free radicals and molecular oxygen. beta-Scission and internal hydrogen atom transfer reactions of the alkoxyl free radicals lead to the formation of various carbon-centered free radicals. In the case of the primary ethyl peroxyl radicals, decay through the Russell pathway forms molecular oxygen.  相似文献   

6.
Direct electron spin resonance was used to detect tert-alkylperoxyl radicals generated by hematin and the corresponding hydroperoxides at near-physiological pH values. The spin-trapping method was necessary to detect the less persistent primary ethylperoxyl radical. Under a nitrogen atmosphere, the electron spin resonance signal of the tert-alkylperoxyl radicals decreased, and the ethylperoxyl spin-adduct concentration did not change. Concomitant studies, using a Clark oxygen electrode, show that oxygen was consumed by the hematin-tert-alkyl hydroperoxide systems, but was released by the hematin-ethyl hydroperoxide reaction. Thus, molecular oxygen seems to play a subsidiary role in the hematin-catalyzed decomposition of hydroperoxides. Based on the electron spin resonance and oxygen electrode results, a mechanism for the continuous production of the peroxyl free radicals is proposed for hematin/hydroperoxide systems. The present spectroscopic methodology can be used to search for peroxyl free radical formation by hemoprotein/hydroperoxide systems.  相似文献   

7.
We have demonstrated with electron paramagnetic resonance (EPR) that organic hydroperoxides are decomposed to free radicals by both human polymorphonuclear leukocytes (PMNs) and purified myeloperoxidase. When tert-butyl hydroperoxide was incubated with either PMNs or purified myeloperoxidase, peroxyl, alkoxyl, and alkyl radicals were trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the case of ethyl hydroperoxide, DMPO radical adducts of peroxyl and alkyl (identified as alpha-hydroxyethyl when trapped by tert-nitrosobutane) radicals were detected. Radical adduct formation was inhibited when azide was added to the incubation mixture. Myeloperoxidase-deficient PMNs produced DMPO radical adduct intensities at only about 20-30% of that of normal PMNs. Our studies suggest that myeloperoxidase in PMNs is primarily responsible for the decomposition of organic hydroperoxides to free radicals. The finding of the free radical formation derived from organic hydroperoxides by PMNs may be related to the cytotoxicity of this class of compounds.  相似文献   

8.
To characterize changes to the heme and the influence of membrane lipids in the reaction of cytochrome c with peroxides, we studied the reaction of cytochrome c with tert-butyl hydroperoxide (tert-BuOOH) by magnetic circular dichroism (MCD) and direct electron paramagnetic resonance (EPR) in the presence and absence of different liposomes. Direct low-temperature (11 degrees K) EPR analysis of the cytochrome c heme iron on exposure to tert-BuOOH shows a gradual (180 s) conversion of the low-spin form to a high-spin Fe(III) species of rhombic symmetry (g = 4.3), with disappearance of a prior peroxyl radical signal (g(o) = 2.014). The conversion to high spin precedes Soret band bleaching, observable by UV/Vis spectroscopy and by magnetic circular dichroism (MCD) at room temperature, that indicates loss of iron coordination by the porphyrin ring. The presence of cardiolipin-containing liposomes delayed formation of the peroxyl radical and conversion to high-spin iron, while dicetylphosphate (DCP) liposomes accelerated these changes. Correspondingly, bleaching of cytochrome c by tert-BuOOH at room temperature was accelerated by several negatively charged liposome preparations, and inhibited by mitochondrial-mimetic phosphatidylcholinephosphatidylethanolaminecardiolipin (PCPECL) liposomes. Concomitant with bleaching, spin-trapping measurements with 5,5-dimethyl-1-pyroline-N-oxide showed that while the relative production of peroxyl, alkoxyl, and alkyl radicals was unaffected by DCP liposomes, PCPECL liposomes decreased the spin-trapped alkoxyl radical signal by 50%. The EPR results show that the primary initial change on exposure of cytochrome c to tert-BuOOH is a change to a high-spin Fe(III) species, and together with MCD measurements show that unsaturated cardiolipin-containing lipid membranes influence the interaction of tert-BuOOH with cytochrome c heme iron, to alter radical production and decrease damage to the cytochrome.  相似文献   

9.
Hydroperoxide-induced radical production in liver mitochondria   总被引:2,自引:0,他引:2  
When isolated rat liver mitochondria are treated with tert-butyl hydroperoxide in the presence of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide, a six-line ESR signal is observed with parameters characteristic of a carbon-centered radical. The radical is shown to be CH3. using 2-methyl-2-nitrosopropane as the spin trap. Inhibition of radical production by EDTA and N-ethylmaleimide provides evidence for participation by metals and reduced sulfhydryl groups in the radical-generating reaction. It is proposed that radicals are formed through the reaction between a reducing agent, a metal and the hydroperoxide.  相似文献   

10.
We have demonstrated that hypochlorite (HOCI/OCl-) and hypobromite (HOBr/OBr-) can react with tert-butyl hydroperoxide with close rate constants (k(HOCl) = 10,8 M(-1) x s(1); k(HOBr) = 8,9 M(-1) x (s(-1)). By means of the spin trap 4-pyridyl-1-oxide-N-tert-butyl nitron we have found that both reactions proceed through decomposition of tert-butyl hydroperoxide and generation of tert-butyl peroxyl (OOC(CH3)3) and tert-butoxyl (OC(CH3)3) radicals, the ratio of their the concentrations being dependent on the concentration of tert-butyl hydroperoxide. Thus, hypobromite, similar to hypochlorite, is a precursor of free radicals produced in the reaction with organic hydroperoxides. This reaction can be of great importance in the intensification of free radical processes, namely, in lipid peroxidation at the stage of chain branching.  相似文献   

11.
The formation of radical species during the reaction of ter-tbutyl hydroperoxide and hypochlorous acid has been investigated by spin trapping and chemiluminescence. A superposition of two signals appeared incubating tert-butyl hydroperoxide with hypochlorous acid in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The first signal (aN = 1.537 mT, aH beta = 0.148 mT) was an oxidation product of POBN caused by the action of hypochlorous acid. The second spin adduct (aN = 1.484 mT, aH beta = 0.233 mT) was derived from a radical species that was formed in the result of reaction of tert-butyl hydroperoxide with hypochlorous acid. Similarly, a superposition of two signals was also obtained using the spin trap N-tert-butyl-alpha-phenylnitrone (PBN). tert-Butyl hydroperoxide was also treated with Fe2+ or Ce4+ in the presence of POBN. Using Fe2+ a spin adduct with a N = 1.633 mT and aH beta = 0.276 mT was observed. The major spin adduct formed with Ce4+ was characterised by a N = 1.480 mT and aH beta = 0.233 mT. The reaction of tert-butyl hydroperoxide with hypochlorous acid was accompanied by a light emission, that time profile and intensity were identical to those emission using Ce4+. The addition of Fe2+ to tert-butyl hydroperoxide yielded a much smaller chemiluminescence. Thus, tert-butyl hydroperoxide yielded in its reaction with hypochlorous acid or Ce4+ the same spin adduct and the same luminescence profile. Because Ce4+ is known to oxidize organic hydroperoxides to peroxyl radical species, it can be concluded that a similar reaction takes place in the case of hypochlorous acid.  相似文献   

12.
β-Carotene is thought to be a chain-breaking antioxidant, even though we have no information about the mechanism of its antioxidant activity. Using electron-spin resonance (ESR) spectroscopy coupled to the spin-trapping technique, we have studied the effect of β-carotene and lutein on the radical adducts of the spin-trap PBN (N-t -butyl-α-phenylnitrone) generated by the metal-ion breakdown of different tert -butyl hydroperoxide (t BOOH) concentrations in methylene chloride. The peroxyl radical, along with an oxidation product of PBN (the PBNOx), trapped at room temperature from the breakdown of high concentration of t BOOH (1 M), were quenched by β-carotene or lutein, in competition with the spin-trapping agent. However, carotenoids were not able to quench the alkoxyl and methyl radicals generated in the reaction carried out in the presence of low t BOOH concentration (1 mM). The reaction between carotenoids and the peroxyl radical was also carried out in the absence of the spin trap, at 77 K: Under these different experimental conditions, we did not detect any radical species deriving from carotenoids. In the same system, a further evidence of the peroxyl radical quenching by β-carotene and lutein was obtained. The antioxidant activity of vitamin E was also tested, for comparison with the carotenoids. In the presence of α-tocopherol, peroxyl and alkoxyl radicals were quenched, and the tocopheroxyl radical was detected. Our data provide the first direct evidence that carotenoids quench peroxyl radicals. Under our experimental conditions, we did not detect any carotenoid radical species that could derive from the interaction with the peroxyl radical. The radical-trapping activity of β-carotene and lutein demonstrated in this chemical reaction contributes to our understanding carotenoid antioxidant action in biological systems. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 299–304, 1998  相似文献   

13.
Májeková M  Májek P  Mach P 《Life sciences》1999,65(18-19):1875-1877
The cardio- and neuroprotective effect of the pyridoindole stobadine (S) is conditioned mainly by its good radical scavenging properties. It has been showed by EPR experiment, that the ultimate product of the reaction of stobadine with hydroxyl radical is the nitroxyl radical. However, for the unsaturated dehydrostobadine (DHS) the ultimate product was not experimentally determined, although its reactivity with a hydroxyl radical has been detected. Using the quantum chemical method AM1 we calculated the physico-chemical properties of S, DHS and their radicals. For the stobadine alone, the corresponding radical was formed by removing the H* from the NH group of indol, while in the case of DHS we removed the CH3* from the nitrogen in pyridine ring. For S and DHS we calculated the differences in the energies between the parent molecules and the corresponding radicals as well as the spin distributions for the radicals. The results confirmed the differences in the reactivities of S and DHS.  相似文献   

14.
Few studies are reported on the formation of reactive carbon-centred radical species from toxic xenobiotics. In this paper the formation of carbon radicals derived from the skin sensitizer linalyl hydroperoxide is described using radical trapping and EPR studies. Radical trapping used TMIO as scavenger agent and light, heat or TPP-Fe(3+) as radical inducers. EPR spin trapping was based on the use of the parent alcohol, generating the same allyloxyl radical than the hydroperoxide by photolysis of the corresponding nitrite formed with t-BuONO, also playing the role of the spin trap. It is suggested that the generation of these carbon radical species could play an important role for the binding of the hydroperoxide with skin proteins to form antigenic structures, the first step of the skin sensitization mechanism.  相似文献   

15.
In numerous experimental systems, the neurohormone melatonin has been shown to protect against oxidative stress, an effect which appears to be the result of a combination of different actions. In this study, we have investigated the possible contribution to radical scavenging by substituted kynuramines formed from melatonin via pyrrole ring cleavage. N1-Acetyl-5-methoxykynuramine (AMK), a metabolite deriving from melatonin by mechanisms involving free radicals, exhibits potent antioxidant properties exceeding those of its direct precursor N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and its analog N1-acetylkynuramine (AK). Scavenging of hydroxyl radicals was demonstrated by competition with ABTS in a Fenton reaction system at pH 5 and by competition with DMSO in a hemin-catalyzed H2O2 system at pH 8. Under catalysis by hemin, oxidation of AMK was accompanied by the emission of chemiluminescence. AMK was a potent reductant of ABTS cation radicals, but, in the absence of catalysts, a poor scavenger of superoxide anions. In accordance with the latter observation, AMK was fairly stable in a pH 8 H2O2 system devoid of hemin. Contrary to AFMK, AMK was easily oxidized in a reaction mixture generating carbonate radicals. In an oxidative protein destruction assay based on peroxyl radical formation, AMK proved to be highly protective. No prooxidant properties of AMK were detected in a sensitive biological test system based on light emission by the bioluminescent dinoflagellate Lingulodinium polyedrum. AMK may contribute to the antioxidant properties of the indolic precursor melatonin.  相似文献   

16.
EPR spin trapping using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 3,5-dibromo-4-nitrosobenzene sulphonic acid (DBNBS) has been employed to examine the generation of radicals produced on reaction of a number of primary, secondary and lipid hydroperoxides with rat liver microsomal fractions in both the presence and absence of reducing equivalents. Two major mechanisms of radical generation have been elucidated. In the absence of NADPH or NADH, oxidative degradation of the hydroperoxide occurs to give initially a peroxyl radical which in the majority of cases can be detected as a spin adduct to DMPO; these radicals can undergo further reactions which result in the generation of alkoxyl and carbon-centered radicals. In the presence of NADPH (and to a lesser extent NADH) alkoxyl radicals are generated directly via reductive cleavage of the hydroperoxide. These alkoxyl radicals undergo further fragmentation and rearrangement reactions to give carbon-centered species which can be identified by trapping with DBNBS. The type of transformation that occurs is highly dependent on the structure of the alkoxyl radical with species arising from beta-scission, 1,2-hydrogen shifts and ring closure reactions being identified; these processes are in accord with previous chemical studies and are characteristic of alkoxyl radicals present in free solution. Studies using specific enzyme inhibitors and metal-ion chelators suggest that most of the radical generation occurs via a catalytic process involving haem proteins and in particular cytochrome P-450. An unusual species (an acyl radical) is observed with lipid hydroperoxides; this is believed to arise via a cage reaction after beta-scission of an initial alkoxyl radical.  相似文献   

17.
Luminol chemiluminescence was used to evaluate the scavenging of superoxide, hydroxyl and alkoxy radicals by four antioxidants: dipyridamole, diethyldithiocarbamic acid, (+)catechin, and ascorbic acid. Different concentrations of these compounds were compared with well-known oxygen radical scavengers in their capacity to inhibit the chemiluminescence produced in the reaction between luminol and specific oxygen radicals. Hydroxyl radicals were generated using the Fenton reaction and these produced chemiluminescence which was inhibited by diethyldithiocarbamate. Alkoxy radicals were generated using the reaction of tert-butyl hydroperoxide and ferrous ion and produced chemiluminescence which was inhibited equally by all of the compounds tested. For the determination of superoxide scavengers we describe a new, simple, economic, and rapid chemiluminescence method consisting of the reaction between luminol and horseradish peroxidase (HRP). With this method it was found that 40 nmol/l dipyridamole, 0.18 μmol/l ascorbic acid, 0.23 μmol/l (+)catechin, and 3 μmol/l diethyldithiocarbamic acid are equivalent to 3.9 ng/ml superoxide dismutase (specific scavenger of superoxide) in causing the same degree of chemiluminescence inhibition. These results not only indicated that the antioxidative properties of these compounds showed different degrees of effectiveness against a particular radical but also that they may exert their action against more than one radical.  相似文献   

18.
Free radical involvement in the oxidative events induced by tert-butyl hydroperoxide in erythrocytes has been demonstrated by the use of the electron spin resonance technique of spin trapping with the spin trap 5.5-dimethyl-1-pyrroline-N-oxide (DMPO). The reactions of tert-butyl hydroperoxide with haemoglobins and intact cell systems were studied. Oxyhaemoglobin-containing system showed exclusive production of the t-butyloxy radical spin adduct of DMPO (DMPO-OBut), indicating t-butyloxy radical production. Methaemoglobin-containing systems showed the production of an oxidised derivative of DMPO, 5,5-dimethyl-2-ketopyrrolidino-1-oxyl (DMPOX)-previously associated with the generation of highly oxidised haem-iron. Carbon monoxyhaemoglobin-containing systems show the production of both DMPO-OBut and DMPOX but markedly slower than in either of the other haemoglobin systems. Generally, free radical production in haemoglobin systems was faster than in intact cell systems, indicating a membrane transport rate-limiting step for the tert-butyl hydroperoxide-mediated effects. Data from the use of free radical scavengers to inhibit DMPO-OBut production was consistent with the known reactivities of the scavengers toward t-butyloxy radicals. These and previously reported results (Trotta, R. J., Sullivan, S. G. and Stern, A. (1981) Biochim. Biophys. Acta 679, 230-237 and (1982) Biochem. J. 204, 405-415) implicate important roles for t-butyloxy radicals and haem intermediates in tert-butyl hydroperoxide-induced lipid peroxidation and haemoglobin oxidation in erythrocytes, respectively.  相似文献   

19.
The role of several natural and synthetic carotenoids as scavengers of free radicals was studied in homogeneous solutions. A set of free radicals: *OH, *OOH, and *CH(3) were generated by using the Fenton reaction in dimethyl sulfoxide. It was shown that the spin trapping technique is more informative than optical methods for the experimental conditions under study. 5,5-Dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN) were used as spin traps for the EPR studies. The results show that the scavenging ability of the carotenoids towards radical *OOH correlates with their redox properties.  相似文献   

20.
Electron paramagnetic resonance studies have provided evidence for metmyoglobin initiation of the radical decomposition of cumene hydroperoxide, carried out in buffered aqueous solutions at ambient temperatures. The radicals formed oxidize aminopyrine to a free radical, readily detected at acidic pH, or react with the spin trap nitrosobenzene. The only species so trapped was the cumyl radical (optimal pH, 9.0), previously observed in a similar spin-trapping study of the chemical decomposition of cumene hydroperoxide in organic solvents. The earlier proposal that the cumyl radical arises from breakdown of an initially formed, unstable phenylcumyloxy nitroxide is consistent with the experimental findings of this study. Moreover, it was shown that the decomposition of cumene hydroperoxide initiated by ferrous ion or by other heme compounds occurs by the same mechanism. Thus, the very low peroxidatic activities of several hemeproteins with cumene hydroperoxide involve oxidizing free radicals, unlike H2O2-dependent oxidations catalyzed by true hemeprotein peroxidases, in which enzyme species are the functional oxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号