首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Three key benzylisoquinoline alkaloid biosynthetic enzymes, (S)-N-methylcoclaurine-3'-hydroxylase (CYP80B1), berberine bridge enzyme (BBE), and codeinone reductase (COR), were localized in cultured opium poppy (Papaver somniferum) cells by sucrose density gradient fractionation and immunogold labeling. CYP80B1 catalyzes the second to last step in the formation of (S)-reticuline, the last common intermediate in sanguinarine and morphine biosynthesis. BBE converts (S)-reticuline to (S)-scoulerine as the first committed step in sanguinarine biosynthesis, and COR catalyzes the penultimate step in the branch pathway leading to morphine. Sanguinarine is an antimicrobial alkaloid that accumulates in the vacuoles of cultured opium poppy cells in response to elicitor treatment, whereas the narcotic analgesic morphine, which is abundant in opium poppy plants, is not produced in cultured cells. CYP80B1 and BBE were rapidly induced to high levels in response to elicitor treatment. By contrast, COR levels were constitutive in the cell cultures, but remained low and were not induced by addition of the elicitor. Western blots performed on protein homogenates from elicitor-treated cells fractionated on a sucrose density gradient showed the cosedimentation of CYP80B1, BBE, and sanguinarine with calreticulin, and COR with glutathione S-transferase. Calreticulin and glutathione S-transferase are markers for the endoplasmic reticulum (ER) and the cytosol, respectively. In response to elicitor treatment, large dilated vesicles rapidly developed from the lamellar ER of control cells and fused with the central vacuole. Immunogold localization supported the association of CYP80B1 and BBE with ER vesicles, and COR with the cytosol in elicitor-treated cells. Our results show that benzylisoquinoline biosynthesis and transport to the vacuole are associated with the ER, which undergoes major ultrastructural modification in response to the elicitor treatment of cultured opium poppy cells.  相似文献   

4.
5.
Summary Opium poppy (Papaver somniferum L.) contains a number of pharmaceutically important alkaloids of the benzylisoquinoline type including morphine, codeine, papaverine, and sanguinarine. Although these alkaloids accumulate to high concentrations in various organs of the intact plant, only the phytoalexin sanguinarine has been found at significant levels in opium poppy cell cultures. Moreover, even sanguinarine biosynthesis is not constitutive in poppy cell suspension cultures, but is typically induced only after treatment with a funga-derived elicitor. The absence of appreciable quantities of alkaloids in dedifferentiated opium poppy cell cultures suggests that benzylisoquinoline alkaloid biosynthesis is developmentally regulated and requires the differentiation of specific tissues. In the 40 yr since opium poppy tissues were first culturedin vitro, a number of reports on the redifferentiation of roots and buds from callus have appeared. A requirement for the presence of specialized laticifer cells has been suggested before certain alkaloids, such as morphine and codeine, can accumulate. Laticifers represent a complex internal secretory system in about 15 plant families and appear to have multiple evolutionary origins. Opium poppy laticifers differentiate from procambial cells and undergo articulation and anastomosis to form a continuous network of elements associated with the phloem throughout much of the intact plant. Latex is the combined cytoplasm of fused laticifer vessels, and contains numerous large alkaloid vesicles in which latex-associated poppy alkaloids are sequestered. The formation of alkaloid vesicles, the subcellular compartmentation of alkaloid biosynthesis, and the tissue-specific localization and control of these processes are important unresolved problems in plant cell biology. Alkaloid biosynthesis in opium poppy is an excellent model system to investigate the developmental regulation and cell biology of complex metabolic pathways, and the relationship between metabolic regulation and cell-type specific differentiation. In this review, we summarize the literature on the roles of cellular differentiation and plant development in alkaloid biosynthesis in opium poppy plants and tissue cultures.  相似文献   

6.
Collar rot, caused by Rhizoctonia solani Kühn, is one of the most severe fungal diseases of opium poppy. In this study, heritability, genetic advance and correlation for 10 agronomic, 1 physiological, 3 biochemical and 1 chemical traits with disease severity index (DSI) for collar rot were assessed in 35 accessions of opium poppy. Most of the economically important characters, like seed and capsule straw yield per plant, oil and protein content of seeds, peroxidase activity in leaves, morphine content of capsule straw and DSI for collar rot showed high heritability as well as genetic advance. Highly significant negative correlation between DSI and seed yield clearly shows that as the disease progresses in plants, seed yield declines, chiefly due to premature death of infected plants as well as low seed and capsule setting in the survived population of susceptible plants. Similarly, a highly significant negative correlation between peroxidase activity and DSI indicated that marker-assisted selection of disease-resistant plants based on high peroxidase activity would be effective and survived susceptible plants could be removed from the population to stop further spread.  相似文献   

7.
As the sole plant source of many potent alkaloids, opium poppy (Papaver somniferum L.) is an important medicinal crop. Nevertheless, few studies have characterized opium poppy germplasm with crop-specific molecular markers. Because Turkey is a diversity center for opium poppy, Turkish germplasm is a valuable genetic resource for association mapping studies aimed at identifying QTLs controlling morphine content and agronomic traits. In this study, the morphological diversity and molecular diversity of 103 Turkish opium poppy landraces and 15 cultivars were analyzed. Potentially useful morphological variation was observed for morphine content, plant height, and capsule index. However, the landraces exhibited limited breeding potential for stigma number, and seed and straw yields. Both morphological and molecular analyses showed distinct clustering of cultivars and landraces. In addition, a total of 164 SSR and 367 AFLP polymorphic loci were applied to an opium poppy association mapping panel composed of 95 opium poppy landraces which were grown for two seasons. One SSR and three AFLP loci were found to be significantly associated with morphine content (P < 0.01 and LD value (r 2) = 0.10–0.32), and six SSR and 14 AFLP loci were significantly associated with five agronomic traits (plant height, stigma number, capsule index, and seed and straw yields) (P < 0.01 and LD value (r 2) = 0.08–0.35). This is the first report of association mapping in this crop. The identified markers provide initial information for marker-assisted selection of important traits in opium poppy breeding.  相似文献   

8.
9.
Two carbohydrate-protein fractions were isolated from the water-soluble biopolymer from opium poppy capsules by chromatography on SP-Sephadex. The carbohydrate chains are composed of arabinose, rhamnose, xylose, mannose, glucose, galactose, galacturonic acid, glucuronic acid and 4-O-methyl glucuronic acid. Methylation analysis indicated a high degree of branching suggesting a very complex structure. Treatment of the glycoprotein with NaOH in the presence of NaBH4 resulted in a significant decrease in the serine and threonine content. The carbohydrate side chains released contained the sugar alcohol, galactitol. These results indicate that polysaccharide chains are linked to protein via serine-O-galactoside linkages.  相似文献   

10.
11.
12.
《Carbohydrate research》1986,154(1):189-203
Pectins sequentially extracted from sugar-beet pulp with water (WSP), oxalate (OXP), hot acid (HP), and cold alkali (OHP) have been degraded variously by base-catalysed β-elimination, de-esterification, endopectin lyase, pectin methyl esterase, endopolygalacturonase, and endopectate lyase. The products were studied mainly by chromatography on Sephadex G-100. The pectins contain various amounts of degradation-resistant (hairy) fragments in which the molar ratios of neutral sugar residues to galacturonic acid residues were 4.8, 4.6, 3.8, and 3.7 for WSP, OXP, HP, and OHP, respectively. The molar ratios of rhamnose residues to galacturonic acid residues in these fragments were 0.15, 0.20, 0.38 and 0.35, respectively. The pectins also contained sequences of galacturonic acid residues with relatively little neutral sugar residues attached (smooth fragments). Methyl ester and acetyl groups were distributed fairly regularly along the smooth fragments. Evidence is presented for an association of oligogalacturonic acids with the hairy fragments under the conditions of gel chromatography. Feruloyl groups are located in the hairy fragments. Other phenolic compounds, associated with the purified pectins, appear not to be covalently linked.  相似文献   

13.

Background  

Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR) metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor.  相似文献   

14.
Studies were carried out on honeybees foraging on plant flowers. Results showed significantly higher foraging response of honeybees (Apis mellifera) in genetically divergent narcotic plant opium poppy (Papaver somniferum). Of the 18 mutants and two locally adapted cultivars of diverse genotypes screened, eight revealed significantly greater foraging response manifesting honeybee's preference towards specific plant morphotypes. The number of flower bloom did not correspond to number of foraging bees in both mutant and cultivar plant types of opium poppy. The genotype specific foraging response of honeybees could be attributed to physico-chemical properties of opium poppy flowers. This could have implications for the development of opium alkaloid fortified honeys for novel pharmaceuticals and isolation of natural spray compounds to attract honeybee pollinators for promoting crossing and sustainable hybridity in crops.  相似文献   

15.
The narcotic analgesic morphine is the major alkaloid of the opium poppy Papaver somniferum. Its biosynthetic precursor codeine is currently the most widely used and effective antitussive agent. Along the morphine biosynthetic pathway in opium poppy, codeinone reductase catalyzes the NADPH-dependent reduction of codeinone to codeine. In this study, we have isolated and characterized four cDNAs encoding codeinone reductase isoforms and have functionally expressed them in Escherichia coli. Heterologously expressed codeinone reductase-calmodulin-binding peptide fusion protein was purified from E. coli using calmodulin affinity column chromatography in a yield of 10 mg enzyme l-1. These four isoforms demonstrated very similar physical properties and substrate specificity. As least six alleles appear to be present in the poppy genome. A comparison of the translations of the nucleotide sequences indicate that the codeinone reductase isoforms are 53% identical to 6'-deoxychalcone synthase from soybean suggesting an evolutionary although not a functional link between enzymes of phenylpropanoid and alkaloid biosynthesis. By sequence comparison, both codeinone reductase and 6'-deoxy- chalcone synthase belong to the aldo/keto reductase family, a group of structurally and functionally related NADPH-dependent oxidoreductases, and thereby possibly arise from primary metabolism.  相似文献   

16.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

17.
Pectins are the major component of plant cell walls, and they display diverse biological activities including immunomodulation. The pectin macromolecule contains fragments of linear and branched regions of polysaccharides such as homogalacturonan, rhamnogalacturonan-I, xylogalacturonan, and apiogalacturonan. These structural features determine the effect of pectins on the immune system. The backbones of pectic macromolecules have immunosuppressive activity. Pectins containing greater than 80% galacturonic acid residues were found to decrease macrophage activity and inhibit the delayed-type hypersensitivity reaction. Branched galacturonan fragments result in a biphasic immunomodulatory action. The branched region of pectins mediates both increased phagocytosis and antibody production. The fine structure of the galactan, arabinan, and apiogalacturonan side chains determines the stimulating interaction between pectin and immune cells. This review summarizes data regarding the relationship between the structure and immunomodulatory activity of pectins isolated from the plants of the European north of Russia and elucidates the concept of polypotency of pectins in native plant cell walls to both stimulate and suppress the immune response. The possible mechanisms of the immunostimulatory and anti-inflammatory effects of pectins are also discussed.  相似文献   

18.
《Carbohydrate research》1988,172(2):229-242
Pectic and hemicellulosic polysaccharides were successively extracted from an alcohol-insoluble residue (AIR) from carrot root by the actions of Pronase, hot dilute acid, cold dilute alkali, and concentrated alkali in yields corresponding to 12.6, 13.5, 21.7, and 6.7% of AIR, respectively. The first two products were fractionated further by ion-exchange chromatography. Carrot pectins contained 61.3–66.0% of galacturonic acid and 16.0–19.9% of neutral sugars, mainly galactose, arabinose, and rhamnose. Except for the alkali-soluble pectins, the degrees of methylation were high (62.9–67.1) and there was a significant degree of acetylation (7.2–13.5). Pectin fractions were homogeneous in gel-filtration chromatography with viscosity-average molecular weights varying between 36,200 and 56,500. Methylation analysis indicated the presence of arabinogalactans in the pectins extracted during the proteolysis, and fairly long chains of (1→4)-linked galactan with a branched arabinan in the two other pectic fractions. The hemicellulose fraction was mainly composed of (1→4)-linked glucan, (1→4)-linked mannan, (1→4)-linked xylan, and small but significant amounts of pectic polysaccharides. The possible association of cell-wall polymers is discussed.  相似文献   

19.
20.
Codeine, medically the most widely used opiate, is mostly derived from morphine, isolated from opium and poppy straw (Papaver somniferum, opium poppy). Morphine, however, is greatly misused by illegal conversion into its diacetyl-derivative: heroin. The discovery of an efficient alternative medicine or a source for codeine other than opium poppy may contribute to a curtailment of the heroin market. No major adverse properties should be present in such a new medicine or codeine source. In this paper the search for the latter is discussed with regards to the natural occurrence of morphinan derivatives and the biosynthetic pathways in available plants. Economic and social problems connected with the introduction of a new biological source for opiates are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号