首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: High-affinity [3H]5-hydroxytryptamine ([3H]5-HT) binding in the rat spinal cord is similar to that demonstrated in the frontal cortex. [3H]5-HT binds with nearly the same affinity to sites in both tissues. Furthermore, similar patterns of displacement of [3H]5–HT were seen in both tissues, with either spiperone or LSD as the unlabeled ligand. This high-affinity binding appears to be to multiple sites, since displacement studies using 2 nM [3H]5–HT result in Hill coefficients less than unity for spiperone, LSD, and quipazine [Hill coefficients (nH): 0.44, 0.39, 0.40, respectively]. These sites apparently have an equal affinity for [3H]5-HT, since unlabeled 5-HT did not discriminate between them. Thus, the high-affinity [3H]5-HT binding in the spinal cord may be analogous to that observed in the frontal cortex, where two populations of sites have previously been described (5-HTIA, 5-HTIB). In addition to the multiple high-affinity spinal cord binding sites, a low-affinity [3H]5-HT binding component was also identified. A curvilinear Scatchard plot results from saturation studies using [3H]5-HT (0.5–100 nM) in the spinal cord. The plot can be resolved into sites having apparent dissociation constants of 1.4 nM and 57.8 nM for the high-and low-affinity components, respectively. Additional support for a change in affinity characteristics at higher radioligand concentrations comes from the displacement of 30 nM [3H]5-HT by the unlabeled ligand. A nonparallel shift in the dissociation curve was seen, resulting in a Hill coefficient less than unity (0.32). None of the specifically bound [3H]5-HT in the spinal cord is associated with the 5-HT uptake carrier, since fluoxetine, an inhibitor of 5-HT uptake, does not alter binding characteristics. In addition, a 5-HT binding site analogous to the site designated 5-HT, was not apparent in the spinal cord. Ketanse-rin and cyproheptadine, drugs that are highly selective for 5-HT, sites, did not displace [3H]5-HT from spinal tissue, and [3H]spiperone, a radioligand that binds with high affinity to 5-HT2 sites, did not exhibit saturable binding in the tissue. Thus, the 5-HT2 binding site reported in other regions of the central nervous system, and the serotonin uptake carrier do not appear to contribute to the multiple binding sites demonstrated in the spinal cord.  相似文献   

2.
Abstract: The selective serotonin (5-HT) agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT) has been extensively used to characterize the physiological, biochemical, and behavioral features of the 5-HT1A receptor. A further characterization of this receptor subtype was conducted with membrane preparations from rat cerebral cortex and hippocampus. The saturation binding isotherms of [3H]8- OH-DPAT (free ligand from 200 pM to 160 nM) revealed high-affinity 5-HT1A receptors (KH= 0.7–0.8 nM) and lowaffinity (KL= 22–36 nM) binding sites. The kinetics of [3H]8-OH-DPAT binding were examined at two ligand concentrations, i.e., 1 and 10 nM, and in each case revealed two dissociation rate constants supporting the existence of high- and low-affinity binding sites. When the high-affinity sites were labeled with a 1 nM concentration of [3H]8- OH-DPAT, the competition curves of agonist and antagonist drugs were best fit to a two-site model, indicating the presence of two different 5-HT1A binding sites or, alternatively, two affinity states, tentatively designated as 5-HT1AHIGH and 5-HT1ALOW. However, the low correlation between the affinities of various drugs for these sites indicates the existence of different and independent binding sites. To determine whether 5-HT1A sites are modulated by 5′-guanylylimidodiphosphate, inhibition experiments with 5-HT were performed in the presence or in the absence of 100 μM 5′-guanylylimidodiphosphate. The binding of 1 nM [3H]8-OH-DPAT to the 5-HT1AHIGH site was dramatically (80%) reduced by 5′-guanylylimidodiphosphate; in contrast, the low-affinity site, or 5-HT1ALOW, was seemingly insensitive to the guanine nucleotide. The findings suggest that the high-affinity 5-HT1AHIGH site corresponds to the classic 5-HT1A receptor, whereas the novel 5-HT1ALOW binding site, labeled by 1 nM [3H]8-OH-DPAT and having a micromolar affinity for 5-HT, may not belong to the G protein family of receptors. To further investigate the relationship of 5-HT1A sites and the 5-HT innervation, rats were treated with p-chlorophenylalanine or with the neurotoxin p-chloroamphetamine. The inhibition of 5-HT synthesis by p-chlorophenylalanine did not alter either of the two 5-HT1A sites, but deafferentation by p-chloroamphetamine caused a loss of the low-affinity [3H]8-OH- DPAT binding sites, indicating-that these novel binding sites may be located presynaptically on 5-HT fibers and/or nerve terminals.  相似文献   

3.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

4.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

5.
Abstract

Binding of [3H]spiperone was studied in membranes obtained from bovine neurohypophyses devoid of intermediate lobe tissue. Non-linear Scatchard plot suggested the presence of more than a single class of binding sites. Competition experiments using ketanserin, a ligand selective for 5-HT2 receptors, were carried out to ascertain whether serotonergic, in addition to dopaminergic receptors, might be responsible for the heterogeneity of [3H]spiperone binding. Computer-assisted modeling suggested the presence of two classes of binding sites for ketanserin (Ka = 1.6 ± 0.2 and 366.7 ± 20.5 nM, respectively). The Ka value for ketanserin binding to the high-affinity sites, as well as the Ka of [3H]spiperone for these sites suggested by the 2 sites model indicate that they represent serotonin 5-HT2 receptors. The [3H]spiperone Ka at the ketanserin low-affinity sites (65 ± 7 pM) and the rank order of inhibitory potencies for several antagonists show that the lowaffinity sites represent dopamine D-2 receptors.  相似文献   

6.
The effects of chronic administration of interferon (IFN; recombinant human IFN -A/D) on serotonergic binding sites in rat brain were investigated. IFN was injected daily for 2 weeks at a dose of 100000 I.U./kg, (i.p.) in male Wistar rats. IFN did not alter either [3H]ketanserin binding to 5-HT2A receptors or [3H]paroxetine binding to 5-HT transporters. Scatchard analysis of [3H]8-hydroxy-dipropylaminotetraline (8-OH-DPAT) binding to 5-HT1A receptors demonstrated the presence of high- and low-affinity binding sites in both treatment and control groups. IFN significantly increased both Kd and Bmax measures of [3H]8-OH-DPAT binding at low-affinity binding sites, but not at the high-affinity sites. These results suggest that IFN affects the low-affinity 5-HT1A receptors sites and may be involved in the development of IFN-induced psychiatric disturbances.  相似文献   

7.
The binding of tritiated 8-hydroxy-2-(di-n-propyl-amino)tetralin, or [3H]8-OH-DPAT, to membranes from rat cerebral cortex and hippocampus could be inhibited by serotonin (5-HT) and buspirone, and by the 5-HT antagonists propranolol, NAN-190, pindolol, pindobind-5-HT1A, WAY100135, spiperone and ritanserin. All competition curves, except for ritanserin, best fitted a two-site model. In vitro treatment of the membranes withN-ethylmaleimide (NEM), to alkylate sulfhydryl groups, caused dose-dependent decreases of binding; the inhibition curves were biphasic, and the effects irreversible. Reduction of disulfide bonds withl-dithiothreitol (L-DTT) also decreased binding, but in a monophasic way; these effects were fully reversible in cortex, but only partially reversible in hippocampus. In the latter region, but not in cerebral cortex, previous occupancy by [3H]8-OH-DPAT partially protected binding from the effects of bothL-DTT and NEM, suggesting that the thiol groups in the receptor recognition site(s) of this brain region are readily accessible. The binding characteristics were examined with the aid of saturation curves, carried out with increasing concentrations, up to 140 nM, of [3H]8-OH-DPAT. The saturation data were suggestive of a two-site receptor model incorporating a high-affinity site (Kh of 0.3–0.5 nM) corresponding to the 5-HT1A receptor, and a low-affinity site (Kl ofca 25 nM). After in vivo alkylations, carried out by treating rats withN-ethoxycarbonyl-2-ethoxy-1,2-dihydro-quinoline (EEDQ), the saturation curves from both control and EEDQ-treated rats were again best fitted to a two-site model. For EEDQ-treated animals, a drastic decrease of 5-HT1A receptor activity was noted; this loss was greater in hippocampus than in cerebral cortex. Since the decrease in 5-HT1A receptors was not associated with changes in low-affinity binding, the results suggest independent regulations of the two [3H]8-OH-DPAT binding proteins. Altogether, the present data further supports the notion that [3H]8-OH-DPAT, besides labelling 5-HT1A receptors, also binds to other structures in rat cerebral cortex and hippocampus. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   

8.
Some G protein-coupled receptors (GPCRs) have functional links to cancer biology, yet the manifestation of GPCRs in tumor types is little studied to date. Using a battery of radioligand binding assays, we sought to characterize GPCR recognition binding sites on HeLaS3 tumor cells. High levels of binding of the selective serotonin 5-HT1A receptor agonist [3H]8-OH-DPAT were observed in these cells. Saturation and homologous competition experiments indicated that [3H]8-OH-DPAT bound different populations of high- and low-affinity sites. In competition experiments, several serotonergic compounds displaced [3H]8-OH-DPAT binding with low potency from its high-affinity binding sites, suggesting that low-affinity binding is the predominant mode of binding. A variety of drugs targeting different classes of receptors did not affect [3H]8-OH-DPAT binding. These observations may help elucidate the pathophysiological and functional relevance of 5-HT receptors in tumor cells and link GPCRs and tumorigenic mechanisms to pharmacological and chemotherapeutic paradigms.  相似文献   

9.
Abstract: RS-42358–197{(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2,4,5,6-tetrahydro-1H-benzo[de]isoquinolin-1-one hydrochloride} displaced the prototypic 5-hydroxytryptamine3 (5-HT3) receptor ligand [3H]quipazine in rat cerebral cortical membranes with an affinity (pKi) of 9.8 ± 0.1, while having weak affinity (pKi < 6.0) in 23 other receptor binding assays. [3H]RS-42358–197 was then utilized to label 5-HT3 receptors in a variety of tissues. [3H]RS-42358–197 labelled high-affinity and saturable binding sites in membranes from rat cortex, NG108–15 cells, and rabbit ileal myenteric plexus with affinities (KD) of 0.12 ± 0.01, 0.20 ± 0.01, and 0.10 ± 0.01 nM and densities (Bmax) of 16.0 ± 2.0, 660 ± 74, and 88 ± 12 fmol/mg of protein, respectively. The density of sites labelled in each of these tissues with [3H]RS-42358–197 was similar to that labelled with [3H]GR 65630, but was significantly less than that found with [3H]-quipazine. The binding of [3H]RS-42358–197 had a pharmacological profile similar to that of [3H]quipazine, as indicated by the rank order of displacement potencies: RS-42358–197 > (S)-zacopride > tropisetron > (R)-zacopride > ondansetron > MDL72222 > 5-HT. However, differences in 5-HT3 receptors of different tissues and species were detected on the basis of statistically significant differences in the affinities of phenylbiguanide, and 1-(m-chlorophenyl)biguanide when displacing [3H]RS-42358-197 binding. [3H]RS-42358–197 also labelled a population (Bmax= 91 ± 17 fmol/mg of protein) of binding sites in guinea pig myenteric plexus membranes, with lower affinity (KD= 1.6 ± 0.3 nM) than those in the other preparations. Moreover, the rank order of displacement potencies of 15 5-HT3 receptor ligands in guinea pig ileum was found not to be identical to that in other tissues. Binding studies carried out with [3H]RS-42358–197 have detected differences in 5-HT3 receptor binding sites in tissues of different species and further underscore the unique nature of the guinea pig 5-HT3 receptor.  相似文献   

10.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

11.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   

12.
Abstract: Serotonin (5-hydroxytryptamine; 5-HT) 5-HT2A and 5-HT2C receptors belong to the class of phosphoinositide-specific phospholipase C (PLC)-linked receptors. Conditions were established for measuring 5-HT2A-linked and 5-HT2C-linked PLC activity in membranes prepared from previously frozen rat frontal cortex and caudate. In the presence of Ca2+ (300 nM) and GTPγS (1 µM), 5-HT increased PLC activity in caudate membranes. Pharmacological analysis using the selective 5-HT2A antagonist, spiperone, and the nonselective 5-HT2A/2C antagonist, mianserin, demonstrated that over half of the 5-HT-stimulated PLC activity was due to stimulation of 5-HT2C receptors as opposed to 5-HT2A receptors. Radioligand binding assays with [3H]RP 62203 and [3H]-mesulergine were used to quantify 5-HT2A and 5-HT2C sites, respectively, in caudate. From these data, the Bmax for caudate 5-HT2A sites and 5-HT2C sites was 165.4 ± 9.7 fmol/mg of protein and 49.7 ± 3.3 fmol/mg of protein, respectively. In contrast to that in caudate, PLC activity in frontal cortex was stimulated by 5-HT in a manner that was inhibited by the 5-HT2A-selective antagonists, spiperone and ketanserin. Taken together, the results indicate that 5-HT2A- and 5-HT2C-linked PLC activity can be discerned in brain regions possessing both receptor subtypes using membranes prepared from previously frozen tissue. More importantly, significant 5-HT2C-mediated phosphoinositide hydrolysis was observed in caudate, despite the relatively low density of 5-HT2C sites. The significance of these observations with respect to the physiological function of 5-HT2C receptors is discussed.  相似文献   

13.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

14.
Abstract: Previous studies have demonstrated species-specific differences in 5-hydroxytryptamine3 (5-HT3) receptors, but unequivocal evidence of 5-HT3 receptor subtypes, within a species, has not yet been obtained. The purpose of the current study was to test for heterogeneity in 5-HT3 receptors in murine tissues. 5-HT3 receptors in membranes derived from brain cerebral cortex of CD-1, C57BI/6, and Swiss Webster mice and ileum of CD-1 mice were labeled with the 5-HT3 receptor antagonist [3H]RS-42358–197. Structurally diverse competing ligands were then used to characterize the binding site. [3H]RS-42358-197 bound with similar affinity in each of the cortical tissues (mean KD= 0.14 nM; range, 0.06–0.32 nM) but bound with lower affinity in ileal tissue (2.5 nM). The density of sites labeled with [3H]RS-42358–197 ranged from 10.4 fmol/mg of protein in Swiss Webster mouse cortex to 44.2 fmol/mg of protein in Sprague-Dawley rat cortex. Displacing ligands produced a pharmacologic profile of the [3H]RS-42358–197 binding site consistent with it being a 5-HT3 receptor: (R)-YM060 > (S)-zacopride > (R)-zaco-pride > MDL 72222 > 2-methyl-5-HT. However, 10-fold differences in the affinity of certain ligands were found when comparing 5-HT3 binding sites in membranes from cerebral cortex of the different strains of mice and when comparing 5-HT3 binding sites in brain and ileal membranes prepared from the CD-1 mouse strain. Ligands demonstrating selectivity included RS-42358–197, (R)-za-copride, 1-(m-chlorophenyl) biguanide, (R)-YM060, and MDL 72222. These studies demonstrate tissue-and strain-dependent differences in murine 5-HT3 binding sites. This suggests that 5-HT3 receptors exist as multiple subtypes within species and that subtype-selective 5-HT3 ligands may be identified.  相似文献   

15.
Abstract The pharmacological and biochemical characteristics of [3H]desipramine binding to rat brain tissue were investigated. Competition studies with noradrenaline, nisoxetine, nortriptyline, and desipramine suggested the presence of more than one [3H]desipramine binding site. Most of the noradrenaline-sensitive binding represented a high-affinity site, and this site appeared to be the same as the high-affinity site of nisoxetine-sensitive binding. The [3H]desipramine binding sites were abolished by protease treatment, a result suggesting that the binding sites are protein in nature. When specific binding was defined by 0.1 μM nisoxetine, the binding was saturable and fitted a single-site binding model with a binding affinity of ~1 nM. This binding fraction was abolished by lesioning of the noradrenaline neurons with the noradrenaline neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromo-benzylamine (DSP4). In contrast, when 10 μM nisoxetine was used to define the specific binding, the binding was not saturable over the nanomolar range, but the binding fitted a two-site binding model with KD values of 0.5 and >100 nM for the high- and low-affinity components, respectively. The high-affinity site was abolished after DSP4 lesioning, whereas the low-affinity site remained. The binding capacity (Bmax) for binding defined by 0.1 μM nisoxetine varied between brain regions, with very low density in the striatum (Bmax not possible to determine), 60-90 fmol/mg of protein in cortical areas and cerebellum, and 120 fmol/mg of protein in the hypothalamus. The binding capacities of these high-affinity sites correlated significantly with the regional distribution of [3H]noradrenaline uptake but not with 5-[3H]hydroxytryptamine uptake. The low-affinity sites did not correlate with the regional distribution of [3H]noradrenaline uptake. Drug inhibition studies showed that noradrenaline inhibits the binding defined by 0.1 μM nisoxetine in a competitive manner. Together, these findings suggest that only a small fraction of the [3H]desipramine binding can be regarded as “specific” binding, and this binding fraction may represent the substrate recognition site for noradrenaline uptake. Assuming that one molecule of desipramine binds to each carrier molecule, the turnover number for the noradrenaline carrier was calculated to be 20/min, i.e., the duration of one transport cycle was 3 s.  相似文献   

16.
Abstract: We have studied the regional distribution and characteristics of polyamine-sensitive [3H]ifenprodil binding sites by quantitative autoradiography in the rat brain. In forebrain areas ifenprodil displaced [3H]ifenprodil (40 nM) in a biphasic manner with IC50 values ranging from 42 to 352 nM and 401 to 974 µM. In hindbrain regions, including the cerebellum, ifenprodil displacement curves were monophasic with IC50 values in the high micromolar range. Wiping studies using forebrain slices (containing both high- and low-affinity sites) or cerebellar slices (containing only the low-affinity site) showed that high- and low-affinity ifenprodil sites are sensitive to spermine and spermidine, to the aminoglycoside antibiotics neomycin, gentamicin, and kanamycin, and to zinc. Two calmodulin antagonists, W7 and calmidazolium, also displaced [3H]ifenprodil from both sites. Other calmodulin antagonists, including trifluoperazine, prenylamine, and chlorpromazine, selectively displaced [3H]ifenprodil from its low-affinity site in hindbrain and forebrain regions. High-affinity [3H]ifenprodil sites, defined either by ifenprodil displacement curves or by [3H]ifenprodil binding in the presence of 1 mM trifluoperazine, were concentrated in the cortex, hippocampus, striatum, and thalamus with little or no labeling of hindbrain or cerebellar regions. This distribution matches that of NMDAR2B mRNA, supporting data showing that ifenprodil has a preferential action at NMDA receptors containing this subunit. Low-affinity [3H]ifenprodil sites have a more ubiquitous distribution but are especially concentrated in the molecular layer of the cerebellum. [3H]Ifenprodil was found to bind to calmodulin-agarose with very low affinity (IC50 of ifenprodil = 516 µM). This binding was displaced by calmodulin antagonists and by polyamines, with a potency that matched their displacement of [3H]ifenprodil from its low-affinity site in brain sections. However, the localization of the low-affinity [3H]ifenprodil site does not strictly correspond to that of calmodulin, and its identity remains to be further characterized. The restricted localization of high-affinity [3H]ifenprodil binding sites to regions rich in NMDAR2B subunit mRNA may explain the atypical nature of this NMDA antagonist.  相似文献   

17.
Abstract: The binding of [3H]bicuculline methochloride (BMC) to mammalian brain membranes was characterized and compared with that of [3H]γ-aminobutyric acid ([3H]GABA). The radiolabeled GABA receptor antagonist showed significant displaceable binding in Tris-citrate buffer that was improved by high concentrations of chloride, iodide, or thiocyanate, reaching >50% displacement in the presence of 0.1 M SCN?. An apparent single class of binding sites for [3H]BMC (KD= 30 nM) was observed in 0.1 M SCN? for fresh or frozen rat cortex or several regions of frozen and thawed bovine brain. The Bmax was about 2 pmol bound/mg of crude mitochondrial plus microsomal membranes from unfrozen washed and osmotically shocked rat cortex, similar to that for [3H]GABA. Frozen membranes, however, showed decreased levels of [3H]BMC binding with no decrease or an actual increase in [3H]GABA binding sites. [3H]BMC binding was inhibited by GABA receptor specific ligands, but showed a higher affinity for antagonists and lower affinity for agonists than did [3H]GABA binding. Kinetics experiments with [3H]GABA binding revealed that low- and high-affinity sites showed a similar pharmacological specificity for a series of GABA receptor ligands, but that whereas all agonists had a higher affinity for slowly dissociating high-affinity [3H]GABA sites, bicuculline had a higher affinity for rapidly dissociating low-affinity [3H]GABA sites. This reverse potency between agonists and antagonists during assay of radioactive antagonists or agonists supports the existence of agonist- and antagonist-preferring conformational states or subpopulations of GABA receptors. The differential affinities, as well as opposite effects on agonist and antagonist binding by anions, membrane freezing, and other treatments, suggest that [3H]BMC may relatively selectively label low-affinity GABA receptor agonist sites. This study, using a new commercially available preparation of [3H]bicuculline methochloride, confirms the report of bicuculline methiodide binding by Mohler and Okada (1978), and suggests that this radioactive GABA antagonist will be a valuable probe in analyzing various aspects of GABA receptors.  相似文献   

18.
19.
[3H]8-OH-DPAT is a selective ligand for labeling 5-HT1A receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [3H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [125I]RTI-55 and [3H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [3H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [3H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [125I]cyanopindolol, [3H]ketanserin/[3H]mesulergine, [3H]GR-65630, [3H]GR-113808 and [3H]LSD) that specifically labeled 5-HT1, 5-HT2, 5-HT3, 5-HT4 and 5-HT5–7 receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

20.
Abstract: Stable transfection of the human neuroblastoma cell line SH-SY5Y with the human 5-hydroxytryptamine2A (5-HT2A) or 5-HT2C receptor cDNA produced cell lines demonstrating ligand affinities that correlated closely with those for the corresponding endogenous receptors in human frontal cortex and choroid plexus, respectively. Stimulation of the recombinant receptors by 5-HT induced phosphoinositide hydrolysis with higher potency but lower efficacy at the 5-HT2C receptor (pEC50 = 7.80 ± 0.06) compared with the 5-HT2A receptor (pEC50 = 7.30 ± 0.08). Activation of the 5-HT2A receptor caused a transient fourfold increase in intracellular Ca2+ concentration. Whole-cell recordings of cells clamped at ?50 mV demonstrated a small inward current (2 pA) in response to 10 µM 5-HT for both receptors. There were no differences in potency or efficacy of phosphoinositide hydrolysis among four hallucinogenic [d-lysergic acid diethylamide (LSD), 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI), 5-methoxy-N,N-dimethyltryptamine, and mescaline] and three nonhallucinogenic drugs (m-chlorophenylpiperazine, quipazine, and ergotamine). Comparison of equipotent doses producing 20% of the maximal response induced by 5-HT revealed selective activation of the 5-HT2A receptor by LSD and to a lesser degree by DOI, mescaline, and ergotamine. Quipazine and 5-methoxy-N,N-dimethyltryptamine were relatively nonselective, whereas m-chlorophenylpiperazine selectively activated the 5-HT2C receptor. It is unlikely therefore that hallucinosis is mediated primarily by activity at the 5-HT2C receptor, whereas activity at the 5-HT2A receptor may represent an important but not unique mechanism associated with hallucinogenic drug action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号