共查询到20条相似文献,搜索用时 0 毫秒
1.
Justinus Beer Gerhard M. Technau Jose A. Campos -Ortega 《Development genes and evolution》1987,196(4):222-230
Summary We describe the results of cell transplantation experiments performed to investigate mesodermal lineages in Drosophila melanogaster, particularly the lineages of the somatic muscles, the visceral muscles and the fat body. Cells to be transplanted were labelled by injecting a mixture of horseradish peroxidase (HRP) and fluorescein-dextran (FITC) in wild-type embryos at the syncytial blastoderm stage. For transplantation cells were removed from the ventral furrow, 8–12 min after the start of gastrulation, and individually transplanted into homotopic or heterotopic locations of unlabelled wild-type hosts of the same age. HRP labelling in the resulting cell clones was demonstrated histochemically in the fully developed embryo; histotypes could be distinguished without ambiguity. Mesodermal cells were already found to be committed to mesodermal fates at the time of transplantation. They developed only into mesodermal derivatives and did not integrate in non-mesodermal organs upon heterotopical transplantation. No evidence was found for commitment to any particular mesodermal organ at the time of transplantation. The majority of somatic muscle clones contributed cells to only one segment. However, clones were not infrequently distributed through two or even three segments. Clones of fat body cells were generally restricted to a small region. However, cells of clones of visceral musculature were widely distributed. With respect to the proliferative abilities of transplanted cells the clones were difficult to interpret due to the syncytial character of the somatic musculature and the fact that the organization of the other organs is poorly understood. Evidence from histological observations of developing normal embryos indicates only three mitoses for mesodermal cells. Clones larger than seven cells were not found when embryos were fixed previous to germ-band shortening; larger clones were found in the fat body and visceral musculature after fixing the embryos at the end of organogenesis. Quantitative considerations suggest that a few mesodermal cells might perform more than three mitoses. 相似文献
2.
Summary In this paper experiments concerning some aspects of the development of pole cells and midgut progenitors in Drosophila are reported. Cells were labelled by injecting horseradish-peroxidase (HRP) in embryos before pole bud formation and transplanted at different stages into unlabelled embryos, where the transplanted cells developed together with the unlabelled cells of the host. The hosts were then fixed and stained at different ages in order to demonstrate the presence of HRP in the progenies of transplanted cells. The main conlusions of the study are as follows. The gonads are the only organ to the formation of which pole cells normally contribute; those pole cells which do not participate in the formation of the gonads are finally eliminated or degenerate. Since the number of primordial germ cells in the gonads is the same irrespective of the number of pole cells present in the embryo, an (unknown) mechanism must exist regulating the final number of pole cells in each of the gonads. After their formation and before reaching the gonads, pole cells have been found to divide only up to two times. With respect to the midgut progenitors, the cells of both anlagen have been found to be committed to develop into midgut, although they behave as equivalent in that they do not apparently distinguish between the anterior and posterior anlage. Midgut progenitors have been found to divide a maximum of three times and to produce two different types of cells, epithelial cells of the midgut wall and spindle-like cells located internally in the gut. 相似文献
3.
Summary Embryos of 171 Drosophila lines carrying a P-lacZ insertion on the second or third chromosome were analyzed regarding their pattern of lacZ expression. All lines were selected from a larger screen of about 4000 lines (Bier et al. 1989). Tissue specificity and time of onset of lacZ expression was documented for each line. Thereby, a comprehensive list of markers for the various tissue and cell types of the Drosophila embryo could be assembled. With the help of several P-lacZ lines the development of a number of structures was studied which so far had been described only insufficiently or not at all. In particular, the embryonic origin and early development of the oenocytes, imaginal discs, histoblasts, fat body, dorsal vessel, and perineurial cells was analyzed. Several previously unknown cell types associated with the dorsal vessel, trachea, and epidermis were discovered. By combining data regarding the origin of the different mesodermally derived organs it was possible to generate in some detail a fate map of the mesoderm of the stage 11 Drosophila embryo.
Offprint requests to: V. Hartenstein 相似文献
4.
Summary Changes at the ultrastructural level during germ band extension in the embryo ofDrosophila melanogaster are described. Cytoplasmic connections between cells and the yolk sac are present during initial cellular movements. At this time, a continuous system of microfilaments is present adjacent to the membranes in the connections and at the periphery of the yolk sac. As germ band extension progresses, this system becomes discontinuous, and microfilaments are apparent only in the immediate vicinity of the connections. Cytoplasmic connections are disassembled at approximately the midpoint of extension; at the same time, extensive membrane associations develop between germ band cells and between these cells and adjacent yolk sac membranes. Positioning and orientation of cytoplasmic connections suggest that the yolk sac, via these connections, is actively involved in the cellular movements of early germ band extension.This paper is dedicated with respect and affection to Donald F. Poulson 相似文献
5.
The swallow gene of Drosophila is required for the localization of two messenger RNAs, bicoid and hu-li tai shao, to the anterior pole of oocytes during the later stages of oogenesis. In addition, swallow appears to play a role in early embryogenesis, as swallow mutant embryos have defects in early nuclear cleavage and migration. In an effort to identify regions of the Swallow protein that are essential for function, we have initiated a molecular characterization of seven existing alleles of swallow. All seven alleles have been sequenced, and comparison to wild-type swallow indicates that the seven alleles include single amino acid substitutions that identify critical residues, as well as lesions that result in truncated proteins. Western blots using affinity-purified antibodies agree well with the DNA sequence data, and identify a probable null protein. In order to determine the extent to which each allele affects swallow function, females homozygous or hemizygous for each allele were tested for the range and abundance of (1) RNA localization defects, and (2) embryonic cuticular defects. Swallow alleles can be grouped into two categories: those that retain partial function, and those indistinguishable from the putative null allele. Some swallow mutant alleles partially rescue the dominant female sterility of mutations in the atypical 67C -tubulin gene, supporting other studies that suggest a link between RNA localization and the microtubule cytoskeleton.Edited by C. Desplan 相似文献
6.
The spectrum of lectin binding sites as it emerges during embryonic development of Drosophila was analysed by means of fluorescein-labelled lectins. As development and morphogenesis proceed, the reaction pattern becomes more and more complex. Mannose/glucose-, mannose-, N-acetylglucosamine- and poly-N-ace-tylglucosamine-specific lectins bind ubiquitously. Nuclear envelopes only have binding sites for wheat germ agglutinin. N-acetylgalactosamine-binding lectins are specific for ectodermal derivatives. Ga-3-N-acetylgalac-tosamine-binding lectins are highly selective markers for neural structures, haemocytes and Garland cells. It is also shown that Drosophila laminin is differentially glycosylated. The possible implications of differential and germ layer-specific glycosylation are discussed.Dedicated to the memory of Jan Callaerts 相似文献
7.
Teresa Ruth Strecker Peng Li Sean Austin McGhee Debby Ham Su Kyong Smith Jennifer Ann Schreck Sue Jung Youn Philantha Sue-Hwa Kon 《Development genes and evolution》1995,204(6):359-368
We have investigated the effects of the glucocorticoid, dexamethasone, and five structural analogs on Drosophila development in an effort to identify steroid ligands that may play a role in the embryogenesis of this organism. Embryos were exposed to glucocorticoids either by direct culture in supplemented medium, or by examining embryos from adult flies raised on supplemented fly food. After exposure, embryos were examined for developmental defects. At a morphological level, exposure to dexamethasone disrupts the dorsolateral folding of the amnioserosa during germ band extension. In addition, germ band retraction and dorsal closure is also disrupted. The phenocritical period of these effects is within the first 4 h of embryogenesis. This response is dosage sensitive, with embryos responding to concentrations of dexamethasone ranging from 10–6 to 10–3M. Furthermore, glucocorticoids which are closely related structural analogs of dexamethasone also disrupt germ band retraction and dorsal closure, while other tested steroids had no effect on embryonic development. At a molecular level, expression of the gene, Krüppel, is absent from the amnioserosa of dexamethasone-treated embryos. The cuticular phenocopy resulting from exposure to dexamethasone and related glucocorticoids is morphologically similar to the mutant phenotype associated with four genes required for germ band retraction, namely hindsight, serpent, tail-up and u-shaped. The results of this study represent the first association of a glucocorticoid with dose, stage and tissue specific effects on Drosophila development at both morphological and molecular levels. 相似文献
8.
Using intracellular horseradish peroxidase injection we traced the developmental fate of early gastrula cells of the procephalic region in the stage 16/17 embryo. Morphogenetic movements in the developing brain are described in three dimensions. The results are related to head segmentation, and an early gastrula fate map of pregnathal head segments is proposed. 相似文献
9.
Summary Very short heat shocks are administered to carefully staged early embryos of Drosophila melanogaster, and the effects on protein synthesis pattern investigated. A shock as short as 2 min will induce the heat shock response (reduction of normal protein synthesis, increased synthesis of the heat shock proteins) in syncytial blastoderm or later stages. Thus the initial events of the heat shock response must occur within 2 min, and not reverse upon rapid return to 22° C. A low level of synthesis of the 70 kDa heat shock protein is sometimes visible in unshocked animals, but may be induced by the labeling procedure. Survival following a short shock is not strictly correlated with a high level of heat shock response. Pre-blastoderm embryos do not produce significant heat shock protein, but survive a 2 min 43°C heat shock better than do heat shock response competent blastoderm embryos. The protein synthesis pattern prior to the blastoderm stage is very stable, possibly enhancing survival following a short shock. Shocks of 3 min or longer are more detrimental to pre-blastoderm embryos than to later stages, confirming the role of the heat shock response in survival following a longer shock. Stage-specific developmental defects (phenocopies) may be induced by heat shock at the blastoderm or later stages. Induction of these defects may require disruption of the normal protein synthesis pattern. Use of very short heat shocks to induce the heat shock response will be valuable in identifying the precise time at which a specific defect can be induced. 相似文献
10.
Summary We have produced monoclonal and polyclonal antibodies against an antigen that is asymmetrically distributed in mature oocytes of Drosophila melanogaster. During late oogenesis and early embryogenesis the antigen undergoes dramatic changes in its cellular localization: until about 2.5 h before completion of oogenesis it is homogeneously distributed in the cytoplasm, then it becomes localized in granules that are more numerous in posterior than in anterior peripheral positions of the ooplasm. The germ plasm is void of the antigen. Shortly after egg deposition the antigen is released from the granules and forms a shallow temporary gradient in the egg. Later during embryogenesis the antigen is associated with the yolk-containing cytoplasm. At the syncytial blastoderm stage it is also detected in the peripheral nuclei. Preliminary evidence suggests that the antigen is an ecdysteroid-related molecule. Five different anti-ecdysone antisera were found to bind to the same antigen or to an antigen with the same localization as our monoclonal antibody. In pattern mutants affecting anteroposterior polarity, the described asymmetrical distribution of the antigen is abnormal. In the mutant BicD, for example, which leads to the formation of two abdomina of opposite polarity, the antigen-containing granules are distributed homogeneously in mature oocytes. 相似文献
11.
Dicephalic — ADrosophila mutant affecting polarity in follicle organization and embryonic patterning
Margit Lohs-Schardin 《Development genes and evolution》1982,191(1):28-36
Summary The mutationdicephalic (dic) affects follicle development and thereby alters the antero-posterior polarity of embryonic patterning. It maps at a single locus (3–46.0±1.0) and can be characterized as a semi-dominant maternal effect mutation with low penetrance. Indic follicles, the 15 nurse cells form two clusters located at opposite poles of the oocyte; the numerical distribution of the nurse cells among the clusters varies from 7:8 to 1:14. Thedic egg shell carries a micropyle (anterior marker) at either pole, but the misshapen respiratory appendages are restricted to one of the two poles in most eggs. The malformed eggs rarely yield larvae and these are always abnormal anteriorly and/or posteriorly. The segment pattern expressed in their cuticle may represent two anterior parts of opposite polarities (double head type), two posterior parts of opposite polarities (double abdomen type, rare) or show uniform polarity. Lability of organization at the cystocyte stage appears as the primary developmental defect of the mutant. 相似文献
12.
Gerhard Martin Technau 《Development genes and evolution》1986,195(6):389-398
Summary A method is presented which allows the study of the progeny of single cells during Drosophila embryogenesis. Cells from various larval anlagen of donor embryos labelled with a lineage tracer are individually transplanted from defined positions into similar, or different, positions in unlabelled hosts. The clones produced by these cells can be seen in whole mounts or in sections of fixed material, when using a histochemical marker (i.e. HRP), and/or in living embryos, when using fluorescent lineage tracers. The characteristics of the clones disclose lineage parameters, such as division patterns, morphogenetic movements and differentiation. The method is especially useful for testing the respective roles of positional information and cell lineage on the commitment of progenitor cells by transplanting these cells into heterotopic positions or into hosts of different genotypes. 相似文献
13.
The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development. Our data indicate that two main types of INP lineages are generated, namely mixed neuronal/glial lineages and neuronal lineages. Genetic loss-of-function and gain-of-function experiments show that the gcm gene is necessary and sufficient for gliogenesis in these lineages. The INP-derived glial cells, like the INP-derived neuronal cells, make major contributions to the central complex. In postembryonic development, these INP-derived glial cells surround the entire developing central complex neuropile, and once the major compartments of the central complex are formed, they also delimit each of these compartments. During this process, the number of these glial cells in the central complex is increased markedly through local proliferation based on glial cell mitosis. Taken together, these findings uncover a novel and complex form of neurogliogenesis in Drosophila involving transit amplifying intermediate progenitors. Moreover, they indicate that type II neuroblasts are remarkably multipotent neural stem cells that can generate both the neuronal and the glial progeny that make major contributions to one and the same complex brain structure. 相似文献
14.
Grillenzoni N de Vaux V Meuwly J Vuichard S Jarman A Holohan E Gendre N Stocker RF 《Development genes and evolution》2007,217(3):209-219
In this paper, we address the role of proneural genes in the formation of the dorsal organ in the Drosophila larva. This organ is an intricate compound comprising the multineuronal dome—the exclusive larval olfactory organ—and a number of mostly gustatory sensilla. We first determine the numbers of neurons and of the different types of accessory cells in the dorsal organ. From these data, we conclude that the dorsal organ derives from 14 sensory organ precursor cells. Seven of them appear to give rise to the dome, which therefore may be composed of seven fused sensilla, whereas the other precursors produce the remaining sensilla of the dorsal organ. By a loss-of-function approach, we then analyze the role of atonal, amos, and the achaete-scute complex (AS-C), which in the adult are the exclusive proneural genes required for chemosensory organ specification. We show that atonal and amos are necessary and sufficient in a complementary way for four and three of the sensory organ precursors of the dome, respectively. AS-C, on the other hand, is implicated in specifying the non-olfactory sensilla, partially in cooperation with atonal and/or amos. Similar links for these proneural genes with olfactory and gustatory function have been established in the adult fly. However, such conserved gene function is not trivial, given that adult and larval chemosensory organs are anatomically very different and that the development of adult olfactory sensilla involves cell recruitment, which is unlikely to play a role in dome formation. N. Grillenzoni and V. de Vaux contributed equally to this work. 相似文献
15.
The possibility that cells of multicellular organisms may compete with one another has been postulated several times. It was experimentally confirmed in Drosophila, probably for the first time, when cells with different metabolic rates were mixed: cells that would have been viable on their own disappeared due to the presence of metabolically more active cells. After almost 30 years of neglect, genetic analysis in Drosophila has started to reveal a gene network that regulates the competitive behavior of cells. If the genes regulating cellular competitiveness in Drosophila have a conserved function in mammals, the study of cell competition could have an impact in several biomedical fields, including functional degeneration, cancer, or stem cell therapies. 相似文献
16.
Summary A saline extract was prepared fromDrosophila eggs. When diluted to a concentration of 1% withDrosophila tissue culture medium, it did not support growth of cells from theDrosophila line D1 during the first few days of subculture as well as medium containing serum. When cells reached a stationary phase,
however, the cell density in medium containing extract was greater than in medium containing serum. By altering the concentrations
of the extract, and by adding bovine albumin, a medium was obtained in which D1 cells survived initial culturing, and which
supported cell growth by day 4 as well as medium plus serum. The initial retardation of growth in medium containing egg extract
might be due to the need of the cells to adapt to the new medium. At the present time fourDrosophila cell lines have been maintained in this medium for more than 16 passages. Preliminary experiments with primary embryonicDrosophila cells indicate that medium containing 2% extract and bovine albumin retards the differentiation of these cells.
This work was supported by a grant from the Science Research Council of Great Britain. 相似文献
17.
Mary K. Olsen Sue K. Rockenbach H. David Fischer John G. Hoogerheide Chen-Shen C. Tomich 《Cytotechnology》1992,10(2):157-167
We have studied the expression of an analog of human tissue plasminogen activator, FK2P, inDrosophila Schneider 2 cells. A number of promoters were tested, including theDrosophila metallothionein promoter (MTd), baculovirus immediate early promoter (IE),Drosophila copia promoter, mouse metallothionein promoter, cytomegalovirus immediate early promoter with or without intron, SV40 immediate early promoter, and human elongation factor 1 promoter. Two of these promoters drove significant expression of FK2P. The MTd promoter is tightly regulated and upon induction with copper or cadmium expression of FK2P increases as much as 180-fold, accumulating in the culture medium to about 7 g FK2P/106 cells/day as determined by ELISA. The IE promoter can direct the constitutive expression to yield about 0.4 g FK2P/106 cells/day. The production of FK2P in these cell lines remains at about the same level after repeated passages, even in the absence of selective pressure. The FK2P accumulated in the culture medium is fully active in an assay using a chromogenic substrate for serine proteases. Western immunoblot analysis shows that the product remains predominately as single-chain molecules in serum-free medium, while in serum-containing medium two-chain material occurs as expected due to the presence of plasmin in serum. Judged from the size in Western immunoblots, the FK2P produced is glycosylated. 相似文献
18.
Danielle Teninges Annie Ohanessian Christine Richard-Molard Didier Contamine 《In vitro cellular & developmental biology. Plant》1979,15(6):425-428
Summary A new type of contaminant particles persistently infectedDrosophila cell lines. On an ultrastructural, morphogenetic and histochemical basis, they are similar to viruses of the Reoviridae group. They have been namedDrosophila K virus (DKV). 相似文献
19.
Takashima S Adams KL Ortiz PA Ying CT Moridzadeh R Younossi-Hartenstein A Hartenstein V 《Developmental biology》2011,(2):85-172
In this paper we have investigated the developmental–genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. 相似文献
20.
Shizuka Ohki 《Plant Cell, Tissue and Organ Culture》1994,36(2):157-162
The shoot differentiation process from leaf explants ofSaintpaulia ionantha Wendl. Gypsy Trail culturedin vitro was investigated via scanning electron microscopy. From 16 combinations of -naphthaleneacetic acid (NAA) and 6-benzyladenine (BA), the optimum concentration for direct shoot formation without callus formation for the cultivar tested was estimated as 0.5 M NAA and 0.5M BA. The first cell divisions were observed after 5 days, in culture and were restricted to cells adjacent to the basal cells of glandular hairs. Meristematic domes were formed after 15 days and were investigated at 20 days. The origin of shoot formation was restricted to epidermal cells adjacent to basal cells of glandular hairs. 相似文献